411 research outputs found

    Identification of Anziaic Acid, a Lichen Depside from Hypotrachyna sp., as a New Topoisomerase Poison Inhibitor

    Get PDF
    Topoisomerase inhibitors are effective for antibacterial and anticancer therapy because they can lead to the accumulation of the intermediate DNA cleavage complex formed by the topoisomerase enzymes, which trigger cell death. Here we report the application of a novel enzyme-based high-throughput screening assay to identify natural product extracts that can lead to increased accumulation of the DNA cleavage complex formed by recombinant Yersinia pestis topoisomerase I as part of a larger effort to identify new antibacterial compounds. Further characterization and fractionation of the screening positives from the primary assay led to the discovery of a depside, anziaic acid, from the lichen Hypotrachyna sp. as an inhibitor for both Y. pestis and Escherichia coli topoisomerase I. In in vitro assays, anziaic acid exhibits antibacterial activity against Bacillus subtilis and a membrane permeable strain of E. coli. Anziaic acid was also found to act as an inhibitor of human topoisomerase II but had little effect on human topoisomerase I. This is the first report of a depside with activity as a topoisomerase poison inhibitor and demonstrates the potential of this class of natural products as a source for new antibacterial and anticancer compounds

    A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene

    Get PDF
    Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria\u27s host is a farmer clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer\u27s spore production and depresses a nonfarmer\u27s spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a domesticated food source

    A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals

    Get PDF
    Bacterially-produced small molecules exert profound influences on animal health, morphogenesis, and evolution through poorly understood mechanisms. In one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta, we find that rosette colony development is induced by the prey bacterium Algoriphagus machipongonensis and its close relatives in the Bacteroidetes phylum. Here we show that a rosette inducing factor (RIF-1) produced by A. machipongonensis belongs to the small class of sulfonolipids, obscure relatives of the better known sphingolipids that play important roles in signal transmission in plants, animals, and fungi. RIF-1 has extraordinary potency (femtomolar, or 101510^{−15} M) and S. rosetta can respond to it over a broad dynamic range—nine orders of magnitude. This study provides a prototypical example of bacterial sulfonolipids triggering eukaryotic morphogenesis and suggests molecular mechanisms through which bacteria may have contributed to the evolution of animals
    corecore