5,305 research outputs found

    Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback Systems and Contexts in HCI

    Get PDF
    As an emerging interaction paradigm, physiological computing is increasingly being used to both measure and feed back information about our internal psychophysiological states. While most applications of physiological computing are designed for individual use, recent research has explored how biofeedback can be socially shared between multiple users to augment human-human communication. Reflecting on the empirical progress in this area of study, this paper presents a systematic review of 64 studies to characterize the interaction contexts and effects of social biofeedback systems. Our findings highlight the importance of physio-temporal and social contextual factors surrounding physiological data sharing as well as how it can promote social-emotional competences on three different levels: intrapersonal, interpersonal, and task-focused. We also present the Social Biofeedback Interactions framework to articulate the current physiological-social interaction space. We use this to frame our discussion of the implications and ethical considerations for future research and design of social biofeedback interfaces.Comment: [Accepted version, 32 pages] Clara Moge, Katherine Wang, and Youngjun Cho. 2022. Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback Systems and Contexts in HCI. In CHI Conference on Human Factors in Computing Systems (CHI'22), ACM, https://doi.org/10.1145/3491102.351749

    Real-time price discovery in stock, bond and foreign exchange markets

    Get PDF
    We characterize the response of U.S., German and British stock, bond and foreign exchange markets to real-time U.S. macroeconomic news. Our analysis is based on a unique data set of high-frequency futures returns for each of the markets. We find that news surprises produce conditional mean jumps; hence high-frequency stock, bond and exchange rate dynamics are linked to fundamentals. The details of the linkages are particularly intriguing as regards equity markets. We show that equity markets react differently to the same news depending on the state of the economy, with bad news having a positive impact during expansions and the traditionally-expected negative impact during recessions. We rationalize this by temporal variation in the competing "cash flow" and "discount rate" effects for equity valuation. This finding helps explain the time-varying correlation between stock and bond returns, and the relatively small equity market news effect when averaged across expansions and recessions. Lastly, relying on the pronounced heteroskedasticity in the high-frequency data, we document important contemporaneous linkages across all markets and countries over-and-above the direct news announcement effects. JEL Klassifikation: F3, F4, G1, C

    Energy and Carbon Considerations of Fine-Tuning BERT

    Full text link
    Despite the popularity of the `pre-train then fine-tune' paradigm in the NLP community, existing work quantifying energy costs and associated carbon emissions has largely focused on language model pre-training. Although a single pre-training run draws substantially more energy than fine-tuning, fine-tuning is performed more frequently by many more individual actors, and thus must be accounted for when considering the energy and carbon footprint of NLP. In order to better characterize the role of fine-tuning in the landscape of energy and carbon emissions in NLP, we perform a careful empirical study of the computational costs of fine-tuning across tasks, datasets, hardware infrastructure and measurement modalities. Our experimental results allow us to place fine-tuning energy and carbon costs into perspective with respect to pre-training and inference, and outline recommendations to NLP researchers and practitioners who wish to improve their fine-tuning energy efficiency.Comment: EMNLP 2023 Findings; First two authors contributed equally; 12 page

    Comparison of Land Skin Temperature from a Land Model, Remote Sensing, and In-situ Measurement

    Get PDF
    Land skin temperature (Ts) is an important parameter in the energy exchange between the land surface and atmosphere. Here hourly Ts from the Community Land Model Version 4.0, MODIS satellite observations, and in-situ observations in 2003 were compared. Compared with the in-situ observations over four semi-arid stations, both MODIS and modeled Ts show negative biases, but MODIS shows an overall better performance. Global distribution of differences between MODIS and modeled Ts shows diurnal, seasonal, and spatial variations. Over sparsely vegetated areas, the model Ts is generally lower than the MODIS observed Ts during the daytime, while the situation is opposite at nighttime. The revision of roughness length for heat and the constraint of minimum friction velocity from Zeng et al. [2012] bring the modeled Ts closer to MODIS during the day, and have little effect on Ts at night. Five factors contributing to the Ts differences between the model and MODIS are identified, including the difficulty in properly accounting for cloud cover information at the appropriate temporal and spatial resolutions, and uncertainties in surface energy balance computation, atmospheric forcing data, surface emissivity, and MODIS Ts data. These findings have implications for the cross-evaluation of modeled and remotely sensed Ts, as well as the data assimilation of Ts observations into Earth system models

    Why not glycine electrochemical biosensors?

    Full text link
    Glycine monitoring is gaining importance as a biomarker in clinical analysis due to its involvement in multiple physiological functions, which results in glycine being one of the most analyzed biomolecules for diagnostics. This growing demand requires faster and more reliable, while affordable, analytical methods that can replace the current gold standard for glycine detection, which is based on sample extraction with subsequent use of liquid chromatography or fluorometric kits for its quantification in centralized laboratories. This work discusses electrochemical sensors and biosensors as an alternative option, focusing on their potential application for glycine determination in blood, urine, and cerebrospinal fluid, the three most widely used matrices for glycine analysis with clinical meaning. For electrochemical sensors, voltammetry/amperometry is the preferred readout (10 of the 13 papers collected in this review) and metal-based redox mediator modification is the predominant approach for electrode fabrication (11 of the 13 papers). However, none of the reported electrochemical sensors fulfill the requirements for direct analysis of biological fluids, most of them lacking appropriate selectivity, linear range of response, and/or capability of measuring at physiological conditions. Enhanced selectivity has been recently reported using biosensors (with an enzyme element in the electrode design), although this is still a very incipient approach. Currently, despite the benefits of electrochemistry, only optical biosensors have been successfully reported for glycine detection and, from all the inspected works, it is clear that bioengineering efforts will play a key role in the embellishment of selectivity and storage stability of the sensing element in the sensor

    Driving style recognition for intelligent vehicle control and advanced driver assistance: a survey

    Get PDF
    Driver driving style plays an important role in vehicle energy management as well as driving safety. Furthermore, it is key for advance driver assistance systems development, toward increasing levels of vehicle automation. This fact has motivated numerous research and development efforts on driving style identification and classification. This paper provides a survey on driving style characterization and recognition revising a variety of algorithms, with particular emphasis on machine learning approaches based on current and future trends. Applications of driving style recognition to intelligent vehicle controls are also briefly discussed, including experts' predictions of the future development

    Toward a Critical Toponymy Framework for Named Entity Recognition: A Case Study of Airbnb in New York City

    Full text link
    Critical toponymy examines the dynamics of power, capital, and resistance through place names and the sites to which they refer. Studies here have traditionally focused on the semantic content of toponyms and the top-down institutional processes that produce them. However, they have generally ignored the ways in which toponyms are used by ordinary people in everyday discourse, as well as the other strategies of geospatial description that accompany and contextualize toponymic reference. Here, we develop computational methods to measure how cultural and economic capital shape the ways in which people refer to places, through a novel annotated dataset of 47,440 New York City Airbnb listings from the 2010s. Building on this dataset, we introduce a new named entity recognition (NER) model able to identify important discourse categories integral to the characterization of place. Our findings point toward new directions for critical toponymy and to a range of previously understudied linguistic signals relevant to research on neighborhood status, housing and tourism markets, and gentrification.Comment: Accepted at EMNLP 2023 (main track

    A novel epigenetic AML1-ETO/THAP10/miR-383 mini-circuitry contributes to t(8;21) leukaemogenesis

    Get PDF
    DNA methylation patterns are frequently deregulated in t(8;21) acute myeloid leukaemia (AML), but little is known of the mechanisms by which specific gene sets become aberrantly methylated. Here, we found that the promoter DNA methylation signature of t(8;21)(+) AML blasts differs from that of t(8;21)(-) AMLs. This study demonstrated that a novel hypermethylated zinc finger-containing protein, THAP10, is a target gene and can be epigenetically suppressed by AML1-ETO at the transcriptional level in t(8;21) AML. Our findings also show that THAP10 is a bona fide target of miR-383 that can be epigenetically activated by the AML1-ETO recruiting co-activator p300. In this study, we demonstrated that epigenetic suppression of THAP10 is the mechanistic link between AML1-ETO fusion proteins and tyrosine kinase cascades. In addition, we showed that THAP10 is a nuclear protein that inhibits myeloid proliferation and promotes differentiation both in vitro and in vivo Altogether, our results revealed an unexpected and important epigenetic mini-circuit of AML1-ETO/THAP10/miR-383 in t(8;21) AML, in which epigenetic suppression of THAP10 predicts a poor clinical outcome and represents a novel therapeutic target
    • …
    corecore