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ABSTRACT 

As an emerging interaction paradigm, physiological computing is increasingly being used to both measure and feed back 

information about our internal psychophysiological states. While most applications of physiological computing are designed 

for individual use, recent research has explored how biofeedback can be socially shared between multiple users to augment 

human-human communication. Reflecting on the empirical progress in this area of study, this paper presents a systematic 

review of 64 studies to characterize the interaction contexts and effects of social biofeedback systems. Our findings highlight 

the importance of physio-temporal and social contextual factors surrounding physiological data sharing as well as how it can 

promote social-emotional competences on three different levels: intrapersonal, interpersonal, and task-focused. We also 

present the Social Biofeedback Interactions framework to articulate the current physiological-social interaction space. We use 

this to frame our discussion of the implications and ethical considerations for future research and design of social biofeedback 

interfaces. 
 

CCS CONCEPTS • Human-centered computing → Human computer interaction (HCI): Interaction techniques; Interactive systems 

and tools; Interaction paradigms; Interaction devices; HCI theory, concepts and models. 

 

Additional Keywords and Phrases: Physiological computing; social biofeedback; physiological data sharing; computer-mediated 

communication; emotion communication; systematic review. 

1 INTRODUCTION 

Designing computing systems able to sense, analyze, and respond to emotional states is essential in bringing 

human-computer interaction closer to human-human communication [102]. These physiological and affective 

computing technologies (also called emotional artificial intelligence) rely upon input data from .,physiological 

signals such as blood volume pulse, heart rate variability, temperature and respiration [18, 21, 22, 122, 139], 

as well as behavioral cues (e.g. facial expression, gesture, and tone [103, 134]). Through the process of 

psychophysiological inference (i.e., the mapping of phenomenologically distinct psychological states to patterns 

of physiological activity [19]), these inputs are analyzed to interpret cognitive, emotional and motivational states. 

This allows the computing agent to modulate its response as a function of user state to drive task efficiency and 

improve user experiences [36]. On the other hand, instead of modulating its response, the computer can also 

return real-time physiological information back to users in a process known as biofeedback [39]. This involves 

externalizing physiological state in an accessible form for users to monitor and subsequently learn to control 

their own physiological activity [39, 139]. For this reason, biofeedback-based physiological systems have been 

particularly beneficial in therapeutic contexts, including in anxiety disorder management [92], substance abuse 
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treatment [115] and general stress management [139], and have also gained popularity in health and fitness 

self-tracking [96].  

Recently, physiological, affective, and social computing research agendas have converged to consider the 

question: if biofeedback can be used on an intrapersonal level to help people understand their 

psychophysiology, can it be used interpersonally to promote an understanding of others? This question is fueled 

by studies showing physiological signals are inherently emotional and social [16]. For example, physiological 

interaction between pairs is correlated with attachment, engagement, and team performance (see [97] for a 

review), and individual physiology reflects changes in social emotions like embarrassment [51], guilt [25] and 

empathy [28] as well as attention [131] in various interpersonal contexts. While physiological activity reflects 

our reactions to social interactions [131] and can inform us about the emotional states of others [111], 

physiological signals do not constitute an explicit channel of information that humans use to interpret others’ 

states [16] as most signals are subtle and displayed internally [16]. However, some research has argued that 

externalizing such data through biofeedback in social contexts can help individuals recognize their own and 

others’ emotions [16, 76], and in turn augment social communication [76]. This shift from using physiological 

input to promote human-computer and intrapersonal interactions to now enhancing human-human interaction 

has significant implications in fulfilling people’s need to belong [4]. For the remainder of this paper, we refer to 

technologies enabling the sharing of physiological signals as social biofeedback systems. 

While it is promising, there are limitations to our understanding of social biofeedback, its effects and the 

environmental factors surrounding its use. A reconceptualization of physiological signals as a communication 

medium has been proposed [38]; however, there is no systematic understanding of the contexts of social 

biofeedback systems. This is important given the significant moderating influence that context can have on the 

quality of communication [9] and thus social outcomes. To address this, we systematically review the existing 

literature on social biofeedback systems to understand how these technologies can enrich social interaction. 

We synthesize the physical, temporal, and social contexts in which such systems are embedded and articulate 

the current physiological-social space through a novel framework, the Social Biofeedback Interactions 

framework. We also provide a qualitative analysis of the effects of social biofeedback on socio-emotional skills, 

and a meta-analysis of its effects on positive emotions. 

 

2 LITERATURE REVIEW 

2.1 Situating physiological computing in a social context   

Biofeedback-based computing systems are increasingly being embedded into everyday ambulatory contexts 

[139] which naturally involve the presence of other people. However, of specific interest to this review is how 

biofeedback can be intentionally designed to promote outcomes of social interaction. This idea is highlighted in 

Chanel and Mühl ’s seminal paper [16], which outlines two principal directions for physiological computing in 

social interactions: (1) using physiology as a social cue and (2) using physiology as a measurement of social 

interactions. As physiological data carries socially relevant information, allowing others to perceive it can help 

people make mental inferences, regardless of whether psychological synchrony is involved [127]. The 

asymmetry involved in user-observer interactions has also been useful in assistive contexts, specifically to tailor 

communication to support educational (e.g., [138]) and work-related outcomes (e.g., [126]). Additionally, since 
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physiological activity fluctuates in response to social factors, biofeedback systems can also be used to assess 

group-level social processes like collaboration. This can be done where the computing module of the system 

assesses the interaction (e.g., synchrony) between physiological inputs from multiple users [16]. 

To the best of our knowledge, only one systematic review has since explored the landscape of social 

biofeedback technologies [38]. This review conceptualized physiological data sharing as a novel communication 

medium from a media psychology and communication perspective. By assessing the communication 

characteristics of physiological data sharing, they found that while most current social biofeedback systems 

enable communication in real-time, they do not afford much autonomy nor opportunities to revise input before 

sharing it with others. Potentially reflecting trends toward interactional (as opposed to informational) displays of 

biofeedback in HCI [6], researchers also found many systems afforded reciprocity (bi- or multi-directional data 

sharing). This is interesting because the support of multi-user input shows a new physiologically-mediated mode 

of communication [16]. 

It was also highlighted that sensemaking with displays of physiological data is highly context-dependent, with 

notable contextual influences being the way data is visualized and the relationship between interactional parties 

[38]. This is consistent with Bradley and Dunlop’s [9] model of contextual information in computer science and 

HCI, which considers both the computing and social environments. The types of relationships between users, 

which fall under the social context category, have not yet been studied alongside the physical and temporal 

dimensions of context. Characterizing social biofeedback systems based on these moderating factors 

surrounding their contexts of cases is important to understand the mechanisms through which these systems 

lead to beneficial effects.  

2.2 Towards an understanding of transferable benefits of social biofeedback 

In their systematic review, Feijt et al. [38] found that social biofeedback systems can benefit interpersonal 

relationships through increasing feelings of intimacy, connectedness and shared experiences. This is consistent 

with other research showing that social connectedness can be enhanced by adding modality-specific features 

designed to express emotions like facial expressions, gestures and emoticons [59] (e.g., Hug Over a Distance 

[128], the Sensing Beds [48], and the Cube and the Picture Frame [43]). 

While results from [38] shed light on the benefits of social biofeedback from a user experience (UX) 

standpoint, what remains unclear is whether these effects are transitory. We turn to the development of social-

emotional skills as a potentially enduring and transferrable benefit of social biofeedback as they enable people 

to express, regulate and understand their affective, cognitive and behavioral states in everyday life and social 

interactions [114]. Interestingly, studies have focused on exploring biofeedback systems to specifically support 

processes of individual emotional expression, regulation and understanding [35]. However, there have not been 

considerations of shared user interface perspectives, particularly amidst concerns that excessive screen-time 

and Internet use may hinder social and emotional skill development [105].  

2.3 Problem statement and contributions 

While the communication characteristics of biofeedback have been explored [38], no studies have 

systematically identified the contexts of social biofeedback systems. It is also unclear whether such systems 

can help users practice socio-emotional skills, beyond providing transitory experiences. Addressing these 

points, the contributions of this paper are: (1) a systematic understanding of the physio-temporal and social 
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characteristics of the interaction contexts of social biofeedback systems, (2) the presentation of a novel 

framework, the Social Biofeedback Interactions framework, articulating the current physiological-social 

interaction space, (3) a qualitative analysis of socio-emotional competences involved in interacting through 

shared interfaces of physiological data, and (4) a meta-analytic review of the effectiveness of social biofeedback 

interactions on positive emotions. 

3 METHOD 

Our review is guided by two research questions: what types of interactions occur in physiological-social space, 

and with whom, and what kind of socio-emotional competencies can be practiced and/or developed by sharing 

displays of physiological data? Our method for identifying and screening research papers follows guidelines by 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; see our detailed flowchart 

in Appendix A). We also conduct a thematic analysis and meta-analysis on the included studies. 

3.1 Search strategy 

The literature search was conducted between June-July 2021 in four databases: ACM Digital Library, IEEE 

Xplore, Scopus and SpringerLink. Google Scholar was also used as an additional resource to ensure all relevant 

papers were included and locate others potentially missed by the database search. References of select papers 

[16, 58, 119] which were key to the research questions were also checked for relevant papers. 

The Boolean search string was iteratively developed across two concept categories, physiological computing 

and social interaction. The final search string used across full texts: (“physiological sens*” OR “physiological 

signal*” OR “physiological data” OR biosens* OR biosignal* OR biodata OR biofeedback) AND (social OR 

interpersonal). To narrow search results from the broader Scopus database, the following search filters were 

applied: journal and conference proceedings, written in English, within Psychology, Engineering or Computer 

Science categories, and with suggested keywords “human”, “physiology” or “biofeedback”. Similarly, the filters 

applied for the SpringerLink database were: articles in “Computer Science and User Interfaces” and “HCI” 

categories. 

3.2 Screening process 

The initial search returned a total of 3,951 research articles which imported into Zotero reference management 

software [1]. 1,233 duplicates were automatically deleted by the software and five additional duplicates were 

then deleted manually. The remaining articles (n= 2,713) were then screened for relevance which was assessed 

based on the inclusion of keywords present in the search string and a focus on computer-mediated human-

human interaction. For instance, papers explicitly describing physiological signals only in monitoring systems 

and for evaluation of clinical/rehabilitative interventions were excluded at this stage.  

3.3 Selection process and eligibility criteria 

The screening resulted in 180 full-text research articles to assess for eligibility. For journal articles, conference 

proceedings and dissertations to be eligible for review, studies were required to (1) be published in English, (2) 

be peer-reviewed, (3) include at least one defined, indirect physiological measure, (4) involve human 

participants and (5) describe an experiment, prototype or system involving a minimum of two interactional 

partners. Studies investigating interpretations of manipulated physiological data (e.g., [30], [135]) and from 
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imagined interactional partners (e.g., [89], [90]) were also included, as we were interested in the perception of 

physiological data in social contexts, even if hypothetical. Where authors published several papers on a given 

system or prototype, papers were included if considered as making a novel, directly relevant contribution. 

Otherwise, only the most comprehensive paper was included. 

To further narrow the scope of the review, studies were excluded if they (1) described only physiological 

measurement by a third-party, such as using physiology for patient monitoring purposes or (2) used only 

external measures (e.g., facial expression, gesture), endocrine or behavioral measures of physiology. We 

exclude external measures as they represent affect in the physical rather than physiological domain [106]. 

Papers capturing a combination of direct and indirect measures (e.g., [109], [107]) were included. Those 

describing (3) a prototype or design concept without evaluation or (4) physiological computing applications only 

in assistive contexts like therapy (e.g., [68]), education (e.g., [138]) or occupation (e.g., [126]) were excluded. 

Papers were also excluded if they (5) described only individual uses of biofeedback contexts. We also included 

papers in which individual biofeedback was designed to be visible to others, such as in a public space (e.g., 

[64], [112]) or multiuser environment (e.g., [71]), as we considered such contexts to be social. Finally, papers 

were excluded if they (6) adopted a purely theoretical perspective, or (7) constituted research proposals, system 

demonstrations or doctoral consortiums.  

The three authors developed the inclusion and exclusion criteria which the first author initially applied to the 

papers. To ensure inter-rater reliability, the second author verified screening decisions for a randomly selected 

subset of 20 papers, and the third author verified the complete sets of included and excluded papers. All three 

authors met regularly to define eligibility criteria, and the list of included papers was reviewed and assessed 

continually.  

 Leading causes of exclusion were the use of physiology for measurement and monitoring purposes (n= 23) 

and a lack of reporting of prototype evaluations (n= 21). The full text of 1 paper [101] was not available on any 

online database, despite the authors’ best efforts to locate it, and was therefore excluded from the corpus. In 

addition, two papers ([12] and [108]) were excluded on the basis that more comprehensive papers describing 

identical prototypes were already included for review ([52] and [109], respectively). Finally, 72 papers were 

included.  

3.4 Quality assessment 

To assess risks of bias, we conducted a quality assessment using the Critical Appraisal Skills Programme 

(CASP) qualitative research checklist [14], the most recommended tool for qualitative studies on individual 

experiences and in social contexts [84]. The checklist was adapted for studies describing a quantitative or 

mixed-methods approach. Based on this assessment, papers were rated as having “good” (n= 46), “fair” (n= 

12) or “poor” (n= 8) methodological quality. The initial assessment was done by the first author and verified by 

the remaining authors where the quality of a paper was deemed poor, predominantly due to a lack of rigorous 

data analysis. All papers receiving a “poor” rating were excluded, resulting in the final inclusion of 64 studies.  

3.5  Data extraction 

Key bibliometrics from each paper (e.g., title, author(s), publication year) were exported from Zotero into an 

Excel spreadsheet. We then manually extracted relevant data from each study: study participants, materials 

and prototypes, design and methodology, key outcomes of biofeedback sharing, and social effects reported. 
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For papers wherein multiple studies were reported, data was extracted for each relevant study reporting user 

feedback on a prototype or outcomes from an intervention with an implemented prototype. For example, data 

was not extracted for user studies conducted for preliminary user research (e.g., in [93]), pilot tests for general 

usability (e.g., in [88]) or specific prototype features (e.g., in [77]), and for physiological measurement validation 

or calibration before intervention (e.g., in [41]).  

3.6 Thematic analysis 

A thematic analysis was conducted to examine the effects of human-human interaction mediated by social 

biofeedback on socio-emotional skills. The aim was to qualitatively describe these effects across affective, 

cognitive, and behavioral levels. Following the process for deductive thematic analysis outlined by Braun and 

Clark [10], we started by familiarizing ourselves with the data and taking preliminary notes. The data consisted 

of the authors’ interpretations of their primary data. Initial codes were then generated and iteratively sorted into 

higher-level themes, reviewed for validity, and further refined. In total, the thematic analysis was performed on 

52 studies, after excluding those which reported only quantitative results (n=12). 

3.7 Meta-analysis 

A meta-analysis was conducted to estimate effect sizes for the effectiveness of social biofeedback 

interactions on positive affect. We included all studies reporting a quantitative measure of positive affect 

captured after social biofeedback-mediated interaction (n=6). Mean scores and standard deviations (SDs) of 

affective questionnaires measuring positive affect were extracted. Cohen’s d [24] was used to estimate the 

standardized mean difference (SMD) with 95% confidence intervals (CI). Inferential statistical test values (e.g., 

t-test values, F-values) were used to calculate effect size when means and standard deviations were not 

reported. 

4 RESULTS 

4.1  General study characteristics 

Studies on social physiological data sharing included in this work were published between 2007-2021 (see 

Appendix B for details). The number of studies on the topic is gradually increasing, particularly since 2013, 

despite a potentially lower emergence of studies from 2020 due to feasibility issues during the COVID-19 

pandemic. General methodology and design characteristics of each paper are detailed in Appendix C. Further 

details of physiological sensors, biofeedback modalities and forms explored in the studies can be found in 

Appendix D. 

The most common application contexts for social biofeedback are social play and tele-social communication 

(both n=14, 22% each). Social play use cases range from multiplayer virtual reality (VR) gameplay (n=5, [29–

31, 45, 63]) to video gaming (n=3, [32, 95, 107, 142]), tabletop gameplay (n=3, [2, 32, 40]), mobile (n=2, [71, 

73]) and outdoor gameplay (n=1, [87]). Use cases for tele-social communication are primarily in remote non-

verbal communication (n=9, [3, 41, 58, 65, 77, 91, 125, 133, 135]), followed by text-messaging (n=4, [52, 67, 

80, 81]) and video chatting (n=1, [70]). Other prominent application contexts for social biofeedback include 

public interactive displays of emotion (n=11, 17%) in the form of installations (n=6), performances (n=3) and 

wearables (n=3), as well as mediated social interaction (n=7), social meditation and relaxation (n=6), social 
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exertion (n=5), online content sharing (n=4) and face-to-face communication (n=2). Overall, the oldest 

applications of social biofeedback are in social entertainment, play and exertion, with studies emerging since 

2007. Mostly from 2015 onwards, an increasing number of studies have focused on tele-social and augmented 

emotion communication, with exploration through artistic means in the last few years.   

4.2 Characteristics of physio-temporal and social contexts  

4.2.1  Physical-temporal context 

To understand the physical and temporal characteristics of physiological data sharing in social contexts, we use 

the Time-Space taxonomy of groupware proposed by Ellis et al. [34], which distinguishes co-located vs. 

distributed physical locations and synchronous (real-time) vs. asynchronous temporal dimensions of interaction. 

Our analysis is shown in Figure 1.  

 

Physical 
context 

Distributed 

[29], [3], [26], [27], [30], [31], [33], [41], [45], [58], 

[60], [61], [63], [65], [70], [85], [94], [95], [107], 

[109], [113], [82], [125], [135] 

[52], [67], [73], [72], [80], [78], [75], [81], 

[77], [89], [90], [91], [118], [133], [136] 
 

Co-located 
[2, 63, 93] , [17], [32], [40], [46], [54], [87], [88], 
[100], [110], [116], [121], [122], [123], [142] 

[37], [55], [98], [112], [119], [120], [83], [130] 

  Synchronous Asynchronous 

  Temporal context 

Figure 1: 2x2 matrix showing studies categorized according to the Time-Space Taxonomy of groupware [34]. 

Distributed systems in general (n=39, 61%) were more commonly described than co-located ones (n=25 

while synchronous systems (n=51, 80%) were more common than asynchronous ones (n=23). Specifically, 

distributed synchronous social biofeedback systems constitute the biggest category (24 studies, 38%), followed 

by co-located synchronous (n=17, 27%), distributed asynchronous (n=15, 23%) and co-located asynchronous 

systems (n=8, 13%).  

4.2.2 Articulating the physiological-social interaction space  

Given the range of social contexts and relationships between interactional partners described in the literature, 

we considered how to represent the social interaction space for current biofeedback systems. First, driven by 

the concept of using one individual’s biofeedback as a social cue for third-party observers [16], we formalize 

the notion of asymmetrical interaction in physiological-social space. While the participant-observer model of 

biofeedback has previously been described [31], we considered how to build on this to reflect differences in 

biofeedback access, extending the idea that in media space, making information (e.g., physiological state) 

available is independent of necessarily obtaining it [44]. We refer to access as opposed to visibility to 

encompass multi-modal forms of biofeedback. Hence, within asymmetrical interactions, we distinguish between 

systems that afford biofeedback access to both primary and secondary users (observers; Figure 2a) and those 

which only display biofeedback to secondary users (Figure 2b). As we intentionally excluded studies describing 
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researchers as recipients of users’ physiological data, we emphasize here that secondary user(s) refers to 

observers without an experimental agenda. 

 

 

Figure 2. Social biofeedback data flows in (a, b) asymmetrical and (c - e) symmetrical systems. The heart icon 

represents any general indirect physiological activity. Solid black arrows show physiological input, curved grey 

arrows show biofeedback of self-data, and dotted arrows show social biofeedback. 

 

In addition, we extend the notion of symmetry in media space [129] to describe a theoretically unexplored 

class of symmetrical interactions in physiological-social space where physiological input is obtained from more 

than one user. Unrelated to time, symmetry distinguishes itself from synchrony (e.g., text messaging can be 

both symmetrical and asynchronous). In practice, sharing physiology in multi-user environments goes beyond 

individual displays to what we refer to as ‘collective’ representations of physiological data. Within collective 

displays, we also consider variations in biofeedback content, as opposed to access, since both primary users 

are given access in symmetrical communication systems. Biofeedback content can include data from the other 

user only (Figure 2c), or data from both users either in raw (Figure 2d) or aggregated forms (Figure 2e). The 

characteristics of symmetrical and asymmetrical systems are summarized in Table 1.  

 

Table 1: Summary of discriminating characteristics of symmetrical and asymmetrical social biofeedback systems 

 

We articulate the full scope of the current physiological-social space in Figure 3: the Social Biofeedback 

Interactions Framework. The framework shows the basic physiological data flows and multi-user interactions 

around individual and collective physiological data displays. It also considers behavioral forms of feedback 

between users.  

System Representation Biofeedback parameters Users 

Symmetrical Collective Content Both primary 

Asymmetrical Individual Access Primary and secondary 
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Figure 3. The Social Biofeedback Interactions Framework  

Overall, 37 studies (58%) designed symmetrical social biofeedback systems, 23 studies (36%) designed 

asymmetrical ones and four studies engineered opportunities for both. In symmetrical systems, it was most 

common for users to receive biofeedback about their own physiological state together with that of other users’ 

(n=14; [2, 52, 54, 67, 70, 72, 73, 75, 77, 85, 95, 116, 119, 121]). In 12 studies, users only received feedback 

about states of co-users and not their own [3, 29, 30, 45, 55, 65, 87, 91, 94, 110, 125, 133], while in four studies 

only aggregated measures of physiology were shown to both players [83, 100, 107, 142]. Six studies combined 

the sharing physiology of all users with additional aggregated measures like average metrics [17] and synchrony 

level between users [46, 60, 61, 82, 113]. One study manipulated both receiving biofeedback from self and 

others, instead of only others’ [40]. 

In asymmetrical systems, it was most common for the primary user not to be in the loop, with only secondary 

users having access to the individual biofeedback (n=13, 54% of asymmetrical systems, [26, 27, 31, 41, 58, 78, 

81, 88–90, 130, 135, 136]). Moreover, biofeedback access was granted to both primary and secondary users 

in 11 studies [37, 63, 64, 80, 93, 98, 109, 112, 118, 120]. Finally, the four studies designed for both symmetrical 

and asymmetrical interaction styles involved two or more symmetrically-engaged users and bystanders who 

could observe the interaction [32, 33, 122] and provided behavioral feedback [123]. 

4.2.3 Social communication context 

Previous research has shown that the effects of physiological data sharing depend on the relationship between 

interacting individuals [119, 122]. To understand the roles of social biofeedback systems as a function of their 

symmetry affordances, we categorize prototypes with respect to four types of social communication contexts: 

interpersonal, group, public and mass [15] (see Figure 4). Within each, we identify different types of social 

relationships. 
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Figure 4: Social communication contexts for (left) symmetrical and (right) asymmetrical social biofeedback systems 

Most symmetrical social biofeedback systems were geared towards connecting dyads (n=28) with strong 

attachments, such as close relations [3, 52, 54, 65, 67, 70, 75, 91, 116, 125] and romantic partners [65, 77, 

110, 119, 133]. Such systems were also used to connect people with similar hobbies, like video gaming [45, 

95, 107] and running [93]. Bidirectional sharing of physiological data in groups (n=8) was used mostly as a 

mechanic in social gameplay with friends [2, 32, 40, 87] and during shared physical exertion with fellow athletes 

[85, 121]. Symmetrical systems deployed in public contexts (n=5) focused on connecting members of the public 

by socially engaging audience members [100, 123] and designing opportunities for transformative interpersonal 

experiences with strangers [33, 55, 122].  

Asymmetrical sharing in dyadic interaction was mainly designed for experimental purposes to study 

mechanisms of social perception [27, 31, 58, 78, 81, 89, 90, 135, 136], with one study using it to introduce 

strategic interdependence in two-player VR games [63]. In group contexts, two studies shared physiological 

metrics of leaders during group exercise [88, 93]. In public, such systems (n=10) involved externalizing 

emotional state as a form of self-expression with loved ones [41], friends [120] and colleagues [112], but also 

in general day-to-day social interactions with strangers [37, 98]. Asymmetrical biofeedback was also used to 

celebrate physical effort among athletes [64, 130]. Lastly, mass communication contexts involved one user 

sharing their physiological activity on social networking platforms, including live broadcasts during specific 

events [26, 80] as well as during video streaming [109] and sharing [118]. 

4.3 The effects of social biofeedback systems 

Figure 5 shows the six themes synthesized from 61 codes through thematic analysis: (1) mindful self-

awareness, (2) self-reflection and regulation of affective states, (3) empathy, (4) compassion and caregiving, 

(5) relationship skills for authentic connectedness, and (6) motivation, performance, and coordinative effort. 

These themes are also sorted according to the key conceptual domains of socio-emotional competencies 

outlined in the domains and manifestations of social-emotional competences (DOMASEC) model [114]. The 

framework delineates how individuals perceive themselves (self-orientation) from how they interact with people 

around them (others-orientation) and how they engage with tasks in the environment they are in (task-

orientation). We use this multi-disciplinary framework as it allows us to clearly distinguish between affective, 

cognitive, and behavioral manifestations of the effects of social biofeedback systems. 
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Figure 5: Overview of major themes and corresponding DOMASEC domains identified through thematic analysis. 

4.3.1 Theme 1: Mindful self-awareness  

As an intrapersonal skill, self-awareness describes the ability to recognize our emotions.  In defining this theme, 

we associate this with mindfulness to describe non-reflective and non-judgmental awareness of our own 

affective states [13]. In this work, mindful self-awareness was found in meditative states of relaxation, noticing 

new internal and external phenomena, and attitudes of openness and acceptance. 

Several studies found that sharing physiological data in immersive environments was a relaxing and calming 

experience [33, 41, 46, 52, 55, 120, 122, 125, 133]. While generally being positive in valence, these experiences 

were not associated with positive high arousal emotions (e.g., joy) but were instead associated with low-arousal 

states (e.g., pleasant, nice, and peaceful) [31, 41, 125]. Physiologically, peaceful states were found in trends 

towards decreasing arousal of users [125] and a natural synchronization of physiological activity [41, 122]. 

Some studies also found that users made fewer efforts to communicate with co-users in meditative states, 

instead becoming more quiet [31, 55, 120, 125]. In others, users aware of their own mindful self-awareness 

expressed wanting to help co-users enter the same state [33, 46]. The emergence of contemplative meditation 

also helped to elicit new perspectives on the self through feelings of individual vulnerability [55] and uniqueness 

[80]. Finally, where social biofeedback was explicitly used for meditative relaxation, studies found an increased 

sense of focus [46] and non-mindful hyper-awareness of one’s weaknesses relative to other users [93]. The 

cognitive mechanisms behind this line of heightened awareness are described in Theme 2.   

Some studies found forms of detached awareness allowing users to perceive internal bodily sensations 

better, noticing new relationships between their physical bodies and the environment [3, 71, 94]. The meta-

awareness of new relationships was an interesting finding in a few studies, with links observed between body 

and mind [77], as well as between users and wider lifeforms such as nature [55, 122]. Some studies also found 

that users noticed relationships between emotions [116] and between users over time [55]. Studies also found 

that users were curious about learning more about themselves, consciously experimenting with their bodies 

[52, 64, 116, 119, 120].  

Our analysis also revealed important attitudinal shifts towards openness and acceptance, both key to 

mindfulness practice [117]. Several studies found that the mere act of sharing physiological data was perceived 

as a gesture of openness [33, 71, 77, 80, 119]. Openness was also found in that some users made conscious 

efforts to observe both the objective display of their physiology and their subjective states, inviting the possibility 

of differences between the two [27, 54]. In terms of fostering acceptance, some studies found users embracing 

a loss of agency despite privacy concerns [64, 88, 116, 130], as well as accepting negative emotions as part of 

the process of physiological data sharing [116]. 
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4.3.2 Theme 2: Self-reflection and regulation of affective states 

On a cognitive level, self-reflection involves the active examination of one’s beliefs, thoughts, and knowledge. 

Unlike mindful self-awareness, it describes the elaborative processing of experience [99].  

Studies found that engaging with social biofeedback systems encouraged individual users to reflect on the 

specific causes of their emotions [37, 52, 54, 83, 98, 120], judge others’ emotions [89, 90, 110] and identify 

triggers for negative states in particular [52, 112]. Shared physiological data displays also stimulated 

comparative judgments and reflected on one’s own states relative to another user’s [27, 120, 121]. After making 

judgements about their own affective states, biofeedback displays were used to validate these judgments as a 

form of confirmation [27, 54, 98, 100, 116]. Other studies found this was also the case when judgements were 

made about the states of others [75, 110].  

These evaluations of personal emotional states also led to behavioral efforts to self-regulate. For instance, 

some studies found users censored or tailored their behavior to avoid potential tension with other users [37, 

110, 112]. Behavioral self-regulation was not only found for those whose physiological data was displayed but 

also for secondary users [37]. Other studies found self-regulation occurring for impression management, where 

users consciously manipulated their self-presentation to deceive, for example, in games [32, 40, 46] and 

sometimes during communication with a partner [67, 80].  

We found that reflection during interaction with shared displays of physiological data can also elicit worries 

about self-revelation. For example, studies found that users were concerned about potential discrepancies 

between their own appraisal of their emotional state and the objective display [37, 98, 112, 119], as well as 

between their own appraisal and that of other users [32, 33, 54, 75, 78, 80, 112, 116]. This was related to 

maladaptive cognitions such as inflated self-consciousness [93, 120] and preoccupations and fears of 

embarrassment [32, 33, 85]. 

4.3.3 Theme 3: Empathy 

We found that both affective and cognitive forms of empathy were relevant competences used during human-

human interaction in physiological-social space. Affective empathy describes the ability to share another 

person’s emotional state, while cognitive empathy is the ability to accurately recognize the state of mind of 

another [13].  

Several studies found affective empathy in the form of shared positive emotions like happiness, vitality and 

enthusiasm [3, 55, 64, 118, 123]. Positive emotions were also shared when users went through hardship 

together, for instance, in social physical exertion [94, 121, 130] or during games [63, 95]. Some studies found 

direct effects of one user’s emotional state on another’s, suggesting emotional convergence [63, 122, 125]. 

Others found evidence of emotional convergence where users tried to mimic a pattern of physiological response 

[41, 65, 67] or where physiological activity naturally became synchronized between interactional partners [52, 

122, 123, 125]. Haptic ‘feeling’ was also found to directly increase feelings of empathy between users [72, 118]. 

Some studies also found evidence of empathic concern, where users became worried when another user’s 

physiology was too high or low [45, 75, 130]. However, several studies also found that having access to another 

person’s physiological data had the opposite effect of connecting people, such as alienation when physiology 

was too different [3, 93, 121].  

We also found that cognitive empathy was fostered by having access to the physiological activity of another. 

Studies found that when presented with the biofeedback of another person, users were able to accurately detect 
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others’ internal states, a construct of empathy called mind perception [27, 37, 52, 65, 116, 125, 130]. Beyond 

perception, other studies found biofeedback of co-user was helpful to understand the emotional state of that 

person [31, 75, 78, 89, 90, 118]. In some cases, users went further by actually asking probing questions about 

the biofeedback to fully understand the context of their co-user [52, 75, 110, 120]. Finally, many studies also 

found users made guesses and explicit inferences about others’ states, another sub-construct of empathy called 

mentalizing [40, 52, 54, 65, 75, 83, 89, 90, 110, 116, 119, 120]. 

Some mixed-methods studies also measured empathy or its sub-constructs using quantitative measures. 

These studies found positive main effects of social biofeedback on empathy [3], self-reported affect [31, 63], 

and usage of affect-related terminology [67, 110]. While excluded from our formal qualitative analysis, it must 

be noted that many quantitative studies in the review measured empathy or its sub-constructs. These found 

that social biofeedback leads to increased emotional perspective-taking [81, 136] and self-reported empathy 

[60, 61, 82, 95]. However, both positive [136] and null results  have been reported for emotional convergence. 

These findings were not formally meta-analyzed due to the diverse range of empathy sub-constructs and 

questionnaires (including custom ones) employed.  

4.3.4 Theme 4: Compassion and caregiving 

Compassion is the feeling that arises when another person is suffering, which motivates helping behavior [47]. 

It differs from empathy in that it involves active support and not necessarily feeling the same emotion [13]. 

The most explicit examples of compassion were found in behavioral manifestations of helping behavior after 

seeing the physiological response of another user. Several studies found that users actively tried to soothe or 

calm down others [52, 65, 83, 110, 130] and sometimes censored their conversations in accordance with 

another person’s physiological display [37, 110, 112]. In some studies, users reported consistently checking up 

on another’s physiological display [52, 75, 109] and directly helping their co-user improve their performance on 

a task [46, 65, 130]. Altruistic behaviors were even noted in competitive settings [45, 73, 94], as well as 

expressions of sympathy and concern in adversarial contexts [89, 90].  

Studies also found that users made conscious efforts to show thoughtfulness and respond to the emotions 

of others to make them feel validated [67, 77, 98, 110]. Specifically, in studies describing asymmetrical social 

biofeedback systems, compassion was found in that secondary users were eager to show sympathetic support 

for primary users going through hardship such as physical exertion [26, 64, 88, 130] and effortful gameplay 

[109]. Finally, an intriguing way of showing compassion was through humor; indeed, some studies found that 

users initiated humor to dissipate feelings of social embarrassment when one person felt overly-exposed [32, 

54, 64]. Moreover, in one quantitative study of prosocial behavior (charitable donating), no effect of social 

biofeedback was found [81]. 

4.3.5 Theme 5: Relationship skills for authentic social connection 

Relationship skills describe the actions taken to establish and maintain positive, healthy, and rewarding 

relationships [56], ultimately fostering emotional experiences of belonging. These are separate from empathetic 

responses because they do not necessarily entail feeling or fully understanding another person’s emotions and 

are also separate from exercising compassion in that they do not require an individual to be suffering. Our 

analysis showed that social biofeedback systems fostered relationship skills in two ways: by encouraging users 

to initiate new connections and maintain positive intimacy in existing relationships.  
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Shared displays of physiological data were used to naturally spark new conversations between people [32, 

52, 64, 72, 75, 80, 98, 130] and support novel and spontaneous interactions with strangers [37, 64, 72, 88, 109]. 

Some studies reported particularly meaningful and spiritually rewarding interactions with strangers or 

acquaintances through shared displays [33, 55, 93, 122]. With regards to existing relationships, simply having 

access to the physiological activity of another person without explicit affiliative action seemed to enhance 

feelings of social presence [3, 27, 55, 65, 119, 125]. However, users went further to maintain connections by 

initiating spontaneous play, such as playfully bothering others [32, 40, 46, 64, 65, 95, 120] and naturally 

collaborating without it being required in a task [2, 31, 72, 73, 130]. Studies also found that opportunities for 

unfiltered emotion sharing were welcomed to practice reciprocal trust and honesty, leading to enhanced 

emotional closeness [54, 77, 116, 133].  

Interestingly, some studies also found a heightened sense of responsibility for others [63, 88, 120]. However, 

some studies found that social biofeedback may instead promote impersonal connections, by reducing 

necessary effort to understand others and distracting from authentic interactions [77, 78]. Likewise, intimate 

awareness and connectedness were also reported when viewing social biofeedback without explicit effort or 

action made by either senders or receivers [91, 133].  

4.3.6 Theme 6: Motivation, performance, and coordinative effort 

A recurrent finding in the reviewed studies was that interacting with social biofeedback systems motivated task-

based persistence. In some studies, feeling observed by others motivated more effort to perform [26, 88, 123] 

and created opportunities for shared goal setting [93, 130]. Social biofeedback also naturally created a sense 

of healthy competition between athletes [94, 121] and even created feelings of competition when there was no 

task at all. In those studies, the controlling of physiological responses itself became a competitive endeavor [3, 

64]. In competitive contexts, social biofeedback was used to strategically enhance chances of better 

performance [32, 40]. However, being intimately aware of others’ physical capabilities also created inopportune 

pressure to perform, leading to giving up [85, 93, 121] and risks of over-exertion due to harmful competition [85, 

130]. Despite this, high levels of engagement and fun were reported across many studies where users were 

engaged in tasks [31, 32, 40, 46, 64, 72, 87, 88, 95, 107, 130].   

Coordinative effort was also an essential aspect in social biofeedback systems embedded in task-specific 

contexts. Studies found that users took the initiative to find creative ways to interact with a co-user to achieve 

a common goal, including developing new norms, rules and vocabularies being socially constructed around 

shared displays [2, 65, 95, 107, 130]. Teamwork also became prominent in asymmetrical systems where users 

depended on each other for feedback about their physiology [63, 95, 130]. Other studies found that spontaneous 

leadership initiatives emerged to maximize the efficiency of coordinated efforts, although this led to both positive 

[107] and negative [142] outcomes. The presence of social biofeedback also encouraged users to put more 

effort into communicating with other users [31, 46, 63, 72, 73, 88, 98, 130]. 

4.4 Meta-analysis 

The meta-analysis for synthesizing the effectiveness of social biofeedback interactions on positive emotions 

included six papers involving 204 participants (30.5 years ± 6.42) (see Appendix E for study characteristics). 

Outcomes of assessments measuring positive affect were synthesized (e.g., Positive and Negative Affect 

Schedule (PANAS) [132], Networked Minds Social Presence (NMSP) [5], Self-Assessment Mannikin (SAM) 
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[8]). The main results of the meta-analysis demonstrate effect sizes of biofeedback from a partner on positive 

affect measurements that vary from small (d=0 and d=0.146 for audio-haptic biofeedback on SAM [30] and 

d=0.01, d=0,02 and d=0.19 for audio-haptic biofeedback on PANAS [81]) to medium (d=0.62 for audio, visual, 

and audio-visual biofeedback on SAM [63]; 0.62 for visual biofeedback on PANAS [5]) to large (d=1.34, d=1.38, 

d=1.46 for visual biofeedback on the NMSP measurement [113]) (see Appendix F for details). The most effective 

study, which measured positive affect using the NMSP measurement [113], was the only study to report a 

significant effect of feedback from three conditions: EEG (d=1.46; 95% CI=[0.78, 2.11]), respiration (d=1.38; 

95% CI=[0.71, 2.04]), and EEG and respiration combined (d=1.34; 95% CI=[0.68, 2.00]). The other five studies 

reported effects of social HR biofeedback on self-reports of positive affect; however, none demonstrated 

significant effects. 

5 DISCUSSION 

Despite methodological advances in psychophysiological data analysis and biosensing technology, our 

understanding of physiological computing as an interaction paradigm remains fragmented. Existing research 

focusing on social uses of biofeedback has suggested that physiological data sharing constitutes a 

communication medium often associated with positive user experiences. However, it is unclear what 

communication contexts are associated with prosocial outcomes, as well as whether social biofeedback can 

promote more lasting interpersonal effects. In this paper, we systematically reviewed empirical progress in 

social applications of biofeedback over the last two decades. We identified physio-temporal and social 

contextual characteristics surrounding biofeedback-mediated communication, and highlighted socio-emotional 

competences associated with physiological data sharing. We also developed the Social Biofeedback 

Interactions framework to articulate the current physiological-social space based on the literature we reviewed. 

In the following section, we discuss the implications of our synthesis and propose opportunities for research 

and design with social biofeedback. 

5.1 What types of interactions occur in physiological-social space, and with whom? 

5.1.1 Physio-temporal context of social biofeedback 

As new communication technologies expand humans’ reach in time and space [57], we suggest this is no 

different for social biofeedback systems. Using the Time-Space taxonomy of groupware [34], we found that 

current social biofeedback systems are designed for use more in synchronous time than asynchronous ways. 

The idea of synchronicity is generally important in computer-mediated communication because it provides an 

understanding of user context [23]. We found synchronicity was important for overcoming physical distance 

while performing social activities involving both competition and collaboration, including games like Space 

Connection [95] and FitBirds [85] and activities from meditation to distributed running. In these situations, 

biofeedback cues were used to inform co-users of each other’s real-time states and as a mechanic to drive the 

social task itself. Interestingly, we also found this was the case for synchronous and co-located social 

biofeedback systems, e.g., [2, 32, 46, 54, 64, 87] demonstrating the informational role of social biofeedback in 

synchronous interactions.  

However, synchronicity is not always practical over distance and may create unwanted pressure to 

constantly share biofeedback and undue responsibility for others’ wellbeing when used for continuous, direct 
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communication. Asynchronicity bypasses these drawbacks with two major types of interactions: awareness 

systems and instant messaging. First, following Weiser’s notion of calm computing, we found awareness 

systems were all conceived to minimize attentional requirements (e.g., BioCrystal [112], ExternalEyes [37], 

Wigglears [98], Open Heart Helmet [130] and MoodLight [120]). With these systems becoming increasingly 

ambulatory, asynchronous co-located systems encouraged interactions that were not necessarily always 

focused on the display itself. For instant messaging, users also felt an increased connection to each other after 

using social biofeedback-enhanced systems (e.g., Significant Otter [77], HeartChat [52] and Animo [75]). We 

suggest that asynchronous systems create subliminal nudges like reminding others to be mindful of each other’s 

emotional states. This supports the ideas of ‘ambient co-presence’ in polymedia [86], and that asynchrony in 

communication is more useful to stay in touch than to relate specific information about a person’s wellbeing 

[57].  

5.1.2 The Social Biofeedback Interactions framework 

To articulate the current physiological-social interaction space, we formulated the Social Biofeedback 

Interactions framework based on [16]’s directions for social biofeedback and concurrent ideas of symmetry in 

media space [129]. This framework allows us to make informed observations about the different implications of 

social biofeedback system designs, as shown in Table 2. 

Table 2: Table showing biofeedback parameters and implications for both symmetrical and asymmetrical social biofeedback 

systems 

System 

classification  

Biofeedback 

parameter 
System applications and implications 

 

 

 

 

Asymmetrical  

Biofeedback 

access granted 

to primary and 

secondary users  

The main purpose of using this type of asymmetrical social biofeedback set-up is for 

celebrating self-expression of emotional state while raising awareness for 

bystanders in the surrounding environment. As emotional self-expression through 

biofeedback can be daunting, granting access to the primary user can alleviate self-

presentation concerns as well as promote introspection.  

 Biofeedback 

access granted 

only to 

secondary user  

Intentionally designing the primary user out of the social biofeedback loop 

necessitates the acceptance of a loss of agency associated with self-disclosure, and 

trust. For those reasons, the most common application of this type of system to date 

is in the laboratory to conduct experiments of social perception of physiological 

signals. However, this type of asymmetricity has been useful in sporting events, 

where physiology reflects exertion effort as opposed to more intimate emotions.  

 

 

 

 

 

Symmetrical 

 

Biofeedback 

contains data 

from both users 

Seeing another user’s biofeedback as well as one’s own has mostly been 

implemented in games and sport to engender competition and drive individual 

performance to rival that of a co-user’s. This system design is also useful for mobile 

messaging applications, in a similar way to text-based texting where both users can 

see their own and their interlocuter’s responses. Data from both users can also be 

presented in aggregated form, which can dispel concerns about social image, create 

opportunities for social play and for collaborative efforts.   

 Biofeedback 

contains only 

data from the 

other user 

This type of design enables users to receive physiological information of one another 

while not being explicitly aware of what physiological data they themselves are 

transmitting. The most common application for this was to increase intimate 

connectedness between two users in a way resembling natural communication. 
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We used this framework to identify patterns of relationship composition in symmetrical and asymmetrical 

social biofeedback systems. Perhaps unsurprisingly, symmetrical systems had the most potential to connect 

close relations (family, friends) and romantic partners. This was the case both when users could see their own 

biofeedback and when they only had access to that of their co-users. This finding is in line with research showing 

that interpersonal closeness is fostered through reciprocity in computer-mediated communication [62]. 

However, adding onto [38]’s findings, we also found that symmetry is not always necessary to facilitate dyadic 

closeness; simply perceiving the biofeedback of another can increase empathy (e.g., [136]) and bring together 

people who do not necessarily know each other. We suggest two possible explanations: physiological signals 

are inherently intimate [38] and volitional act of sharing itself is perceived as an act of openness, encouraging 

secondary users to feel (and potentially become) closer. Overall, our findings align with previous research 

showing that different communication channels are used in different interpersonal relationships to achieve 

varying levels of electronic intimacy [74].  

Our analysis also revealed that symmetrical systems were more easily embedded into closed group settings 

but less easily integrated into open public contexts than asymmetrical systems. In the group settings, 

symmetrical social biofeedback was used to unite people sharing the same hobbies, from competitive gaming 

to sport. Instead, where biofeedback was asymmetrical in groups, this occurred where a leader was established, 

suggesting that social biofeedback can be used for teaching purposes or when one group member is more 

dominant than the others. This follows trends of biofeedback sharing in assistive contexts (e.g., [126]). In 

addition to fostering connection [119], we suggest that these interactions enhance the experience of a social 

task, instead of the outcomes of social tasks. Depending on the task, this can be done using competition or 

collaboration, with symmetrical and asymmetrical biofeedback systems, respectively.  

Finally, in the public realm, we found that asymmetrical systems could be used to provoke interactions 

between strangers or acquaintances (e.g., colleagues). In many of these cases, biofeedback displays were 

used as conversation starters, and social biofeedback functioned as a means of connection. Asymmetrical 

systems were also used in mass communication to connect supporters with athletes and fans with online 

influencers. On the other hand, symmetrical systems integrated into public settings were used to enhance 

audiences’ social engagement. 

5.2 What kind of socio-emotional competences can be practiced and developed during interactions 

through social biofeedback systems?  

In this section, we discuss our qualitative analysis of socio-emotional competences to reflect on the support 

implications of emergent themes and to answer the question: as a new generation of physiological computing 

systems, what benefits can social biofeedback systems bring?  

5.2.1 Self-oriented competences 

The first two themes we identified were (1) mindful self-awareness and (2) self-reflection and regulation of 

affective states, both related to intrapersonal social-emotional competences. First, as an emerging topic in HCI, 

state mindfulness is an important skill to cultivate as it is positively correlated with wellbeing independently of 

trait mindfulness [11]. We found that receiving feedback about one’s own physiology was associated with 

heightened self-awareness, detachment, and the perception of new relationships. This is consistent with 

existing research showing that components of mindfulness can be fostered using individual-basis biofeedback 
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techniques [49]. We propose that social biofeedback systems also have this potential, despite being embedded 

in social communication pipelines and social tasks. In addition, receiving biofeedback from others was 

associated with calmness, meditative states and attitudinal shifts towards openness and acceptance of others, 

implying that sharing biofeedback with others promotes certain facets of state mindfulness, compared to merely 

receiving one’s own. However, due to the cross-sectional nature of our results, we cannot make inferences 

about mindfulness as a trait. 

Our review found that social biofeedback systems helped users reflect in elaborate ways about their 

emotional states and actively attempt to regulate them (theme 2). Self-reflection took the form of active 

questioning of biofeedback displays, and both internal and external efforts to understand and evaluate the 

causes of emotional arousal. Sometimes this judgment may not always be positive, e.g., [93], and we suggest 

this could lead to amplified stereotype threat. Self-reflection also occurred spontaneously and without direct 

instruction, implying that while many attempts at improving self-reflection are embedded in interventions using 

preventative design (e.g., cognitive-behavioral therapy [104]), self-reflection can also be promoted using active 

design approaches involving social biofeedback [13]. The findings from our meta-analysis further suggest that 

the presence of these social biofeedback systems could help support positive emotions. In this sense, we 

propose that social biofeedback systems hold immense promise for furthering the Positive Computing agenda 

[13].  

Finally, social biofeedback systems enhanced self-regulation. This is an expected outcome considering self-

regulation is the primary goal of biofeedback [53, 139]. However, a key finding was that secondary users also 

regulated their behavior when they were aware that the biofeedback of another was on display. We suggest 

this could be a mechanism of empathy, which is a component of emotional intelligence like self-regulation [7]. 

5.2.2 Others-oriented competences 

We found three main themes related to others-oriented social-emotional skills: (1) empathy, (2) compassion 

and caregiving, and (3) relationship skills for authentic social connection. Empathy in itself was the target of a 

few studies, e.g., [27, 52, 61, 81, 82, 95]. It is a particularly relevant construct as nonverbal communication cues 

are critical in empathy development [50], and thus their absence in technology-mediated communication 

constitutes a significant barrier to human-human interaction [13]. Our work suggests that social biofeedback 

can address this; indeed, as demonstrated in our thematic and meta-analyses, sharing biofeedback was 

associated with both affective (e.g., emotional convergence and physiological synchrony) and cognitive forms 

of empathy (e.g., mind perception, mentalizing). Importantly, this did not only occur during direct communication 

but also during shared social activities. In line with research on ‘motivated empathy’ [27, 141], we suggest that 

experiencing empathy through social biofeedback may further motivate altruism and cooperative behaviors. 

Our findings also support the claim by [13] that adding digital medium-specific strategies, in this case, social 

biofeedback, is a viable design strategy that should be adopted to enhance technologically mediated empathy.  

Another significant theme in our analysis was compassion and caregiving, which we found were exhibited 

spontaneously when caregiving was not required as part of a social task, and even more surprisingly, in 

competitive contexts. Significantly, compassion was not only shown towards known others but also exhibited 

during interactions with strangers. We suggest that the intimate nature of biosignals is likely to enhance 

sensitivity to others’ suffering, which aligns with research showing that the human affiliative motivational system 

facilitates compassion with others [66]. We also put forward another explanation: because physiological signals 
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may be more understandable when they represent high arousal (e.g., the meaning of a high HR is more intuitive 

than low HR), it could be that social biofeedback inherently helps make users aware of states of suffering (e.g., 

stressed [20]), more so than positive states. In that way, we propose that the informational value of physiological 

signals could be a motivator of compassion. Overall, we found that presenting social biofeedback can increase 

compassionate behavior among primary and secondary users alike. 

Finally, the last theme we found was related to general relationship skills in building authentic social 

connections. We found that social biofeedback enabled new connections to be made between strangers and 

acquaintances and encouraged new creative forms of interactions between close relations. When interacting in 

physiological-social space, users reciprocally felt compelled to communicate honestly and openly. This is 

important given that online disinhibition effects linked to anonymity and asynchronicity can negatively affect 

social connections [124]. Instead, we found that social biofeedback can promote authentic and emotional self-

disclosure, which has a benign disinhibition effect [69] that improves relationship skills. 

5.2.3 Task-oriented competences  

Task-oriented competences linked with motivation, performance, and coordinative effort (theme 6) can be 

developed when social biofeedback is used for its informational value. Overall, we found that task motivation 

was enhanced in competitive and collaborative contexts, and tasks involving social biofeedback were 

associated with high levels of engagement. This is consistent with previous research in assistive contexts (e.g., 

[126]), suggesting that biofeedback may provide situational awareness as well as conversational grounding 

necessary to accomplish and enjoy social tasks [42, 126]. Interestingly, in asymmetrical systems, motivation 

and effort expenditure were also enhanced where users were simply observed by secondary users, the latter 

of which were not involved in the task. This demonstrates that sharing biofeedback can have social facilitation 

effects, where the presence of others can enhance performance [140]. 

Our findings extend previous research by showing that social biofeedback in symmetrical systems can also 

increase motivation and coordinative effort. Specifically, bidirectional sharing of biofeedback can create 

opportunities for interdependence and teamwork, with a shift in focus from the individual to the group. However, 

we found that this can lead to adverse outcomes due to social comparison mechanisms [137]. Indeed, since 

physiological response is an objective proxy of performance, making the biofeedback of two users visible affords 

direct comparison of the self with others. We found this unwanted competition can lead to discomfort, reduce 

self-perceived competence and create desires to give up. Moreover, social biofeedback not only increases 

emotional connections between people which in turn facilitates task engagement, but it also provides 

informational cues that help users work together to drive task performance.  

5.3 Ethical considerations, Challenges and Research Opportunities 

Despite the identified positive themes of social biofeedback, there is a need to pay attention to ethical issues 

and challenges to guide future work. Firstly, the intimate nature of biosignals can expose users to privacy 

concerns. This can become more complicated when a user feels lacking control over one’s physiology and feel 

being exposed to others [38], which can be associated with anxiety, discomfort and undue embarrassment. We 

suggest such distress about self-image is amplified particularly in asymmetrical systems where primary users 

do not have biofeedback access, and in larger social groups (e.g., public and mass contexts) where biodata is 

shared with strangers. While aggregation or abstraction of users’ data can help alleviate the issues (see Table 
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2), it is also of importance to carefully consider interpersonal closeness between users, symmetricity of sharers 

and observers, and experiential location in implementing social biofeedback [33]. Furthermore, providing the 

ability to control the timing of personal data transmission can help alleviate privacy concerns [41], when 

designing in how physiological information is communicated. For instance, visualizations that provide less 

revealing information generate fewer privacy concerns [79]. 

Sharing physiological data can also induce feelings of excessive responsibility or concern towards the health 

or psychological status of co-users [80]. This could lead to attachment and dependency issues such as 

constantly checking another’s vital signs, especially when display interfaces are portable and ubiquitous. We 

suggest this poses a potential risk when biodata is used for connection as opposed to information, when it is 

shared continuously (e.g., throughout the day), or when sharing is synchronous. Here, it is essential to consider 

interaction contexts and modalities that can support embedding biofeedback into our social world in non-

obtrusive, ambient ways [79]. On the flip side of attachment, sharing biodata could also create alienation and 

uncanny valley effects [3]. Future research could also focus on other facets of user context [9], for example how 

motivational states influence whether physiological data should be abstracted in terms of cognitive or derived 

states to represent their interactions in physiological-social space [33]. These could shed light on the 

mechanisms behind some negative effects of symmetrical biofeedback systems.  

Another focus for future research is exploring how social norms are challenged by the advent of social 

biofeedback systems. For instance, these systems could be deemed inappropriate for use with superiors (e.g., 

one with authority over the other) as they could promote faking social cues to generate desired outcomes or 

manipulation of someone based on perceived affective outcomes [33]. Analysis of the impact of power dynamics 

between sharers and observers on behavior during usage of shared physiological user interfaces could help 

identify what design factors may facilitate or hinder such detrimental processes [33]. It would also be interesting 

to investigate what factors could reduce potential risks of social biofeedback engendering unhealthy exertion in 

a certain competitive context such as fitness competitions, as individuals might strive to maintain a positive self-

image to others. Also, further longitudinal and quantitative research is needed to ascertain whether interacting 

in physiological-social space leads to measurable increases in socio-emotional competences, perhaps as a 

factor of age. Longitudinal research would help to identify whether social biofeedback can help practice these 

skills or cause them to develop. 

Finally, we suggest the proposed Social Biofeedback Interactions framework to serve as a basis for the 

design of future user interfaces of shared physiological data. Designers could use the framework to consider 

how and when user access or content of biofeedback should be granted or restricted, as well as to consider 

how new interactions could be formed between users, non-users, computers, and space. Furthermore, in line 

with the Positive Computing paradigm [13], we advocate for the use of dedicated and active design approaches 

in designing for mental and physical wellbeing with social biofeedback.  

5.4 Limitations   

There is room for improvement. Firstly, the main limitation arises from the diverse terms used in research on 

social biofeedback. During our initial search, some databases returned an excessive amount of entries which 

could not be downloadable due to some limited functionality of the digital libraries; thus, we limited our keywords 

to mitigate this, which could have led to the exclusion of relevant papers. For instance, by favoring umbrella 

terms, we may have excluded papers only specifying unimodal feedback (e.g., neurofeedback) and specific 
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methods (e.g., electroencephalography). We also acknowledge that using broader social terminology (e.g., 

“public”) could also have returned studies where social interplay was not explicitly considered. Secondly, the 

data investigated in our meta-analysis was limited due to the small number of articles given a diverse range of 

evaluation measures and methods used in the field, often lacking quantitative approaches. We encourage future 

research to use standardized, replicable methods and explore quantifiable constructs like empathy.  

6 CONCLUSION 

This systematic review is one of the first to consider shared user interfaces of physiological data, and the first 

to explore their contextual characteristics and enduring effects on social-emotional competences. We identified 

64 key articles and synthesized characteristics of social biofeedback interfaces and contexts and created the 

Social Biofeedback Interactions framework that synthesizes the affordances of such systems based on 

biofeedback access and content. We learned that synchronicity lends itself to the use of social biofeedback as 

an informational cue, while over physical distance, biofeedback is used for connection. We also found that 

relationship composition plays a role in how social biofeedback is used. Finally, we found that social biofeedback 

can foster social-emotional competences on different levels: intrapersonal (mindful self-awareness and self-

reflection and regulation), interpersonal (empathy, compassion and caregiving and relationship skills), and in 

relation to tasks (motivation, performance, and coordinative effort). Promisingly, our paper demonstrates the 

potential for social biofeedback to augment current technologies supporting human-human communication. 

Future work is needed to consider the role of social norms in adopting social biofeedback as a communication 

medium – not only their influences on interaction quality, but also how norms themselves are bound to change.  
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B. Publication Year and Frequency of Reviewed Studies 

 
 
 
 
 

C. General Characteristics of Methodologies for Reviewed Studies 
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Al Mahmud et 

al. (2007) 

Social play X - - X - - - X - X X - - 

Aslan et al. 

(2020) 

Tele-social 

communication 

X X - X - - - X X X - - - 

Chanel et al. 

(2010) 

Public interactive 

performances 

- X X - - X - - X - - - - 

Curmi et al. 

(2013) 

Online content sharing X - - X - - - X - X X X X 

Curran et al. 

(2019) 

Online content sharing X X X - - X X - X X - - - 

D’Souza et al. 

(2018) 

Social play  

 

X - X - - - X X - X X - X 

Dey et al. 

(2017) 

Social play X X X - X X - - X X X - - 

Dey et al. 

(2018) 

Social play  - X X - X X - - X - - - - 
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Dey et al. 

(2019) 
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Elagroudy et 

al. (2008) 

Public interactive 
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Frey (2016) 
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Frey et al. 
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George & 

Hassib (2019) 
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Järvelä et al. 
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Järvelä et al. 

(2019) 
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Li et al. (2018) Social play X - - X X - - X - X - - X 
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Liu et al. 

(2017a) 
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X - - X X X - X X X - - X 

Liu et al. 

(2017b) 

Mediated social 

interaction 

X X X - - X - X X - - - - 

Liu et al. 

(2019) 

Tele-social 

communication  

X - - X X - - X X X - X X 

Liu et al. 

(2019) 

Mediated social 
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- X X - - X X X X - - - X 

Liu et al. 

(2021) 

Tele-social 
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X - - X - - X X X X - X X 

Ma et al. 

(2020) 

Social exertion X - X - - - - X - X - - - 

Magielse et al. 

(2009) 

Social play  X - - X - - X X X X X - - 

Mauriello et al. 

(2014) 

Social exertion X - - X - - X X X X X - - 

Merrill & 

Cheshire 

(2016) 

Mediated social 
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X X X - - - - X X - - - - 
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Robinson et 
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D. Characteristics of Physiological Inputs, Sensors and Displays 

Physiological Inputs and Sensors 

The physiological metrics measured in the social biofeedback systems in our review fall into six categories: 

cardiovascular (n=31, 48%), electrodermal (n=7, 11%), respiratory (n=6, 9%), neural (n=4, 6%), temperature (n=4, 

6%) and generalized (n=2, 3%). 14 systems (22%) fed back combinations of these signals to users, with the most 

common being cardiovascular-EDA metrics (n=6) and respiration-neural activity metrics (n=5). Metrics ranged most 

widely for cardiovascular measures, with seven studies manipulating HR biofeedback by being keeping it constant 

[80, 88, 89, 133], creating authentic preconstructions [58, 134] and substituting it with pre-recordings [131]. With 

respiration biofeedback, 14 studies focused on breathing rate, with four including amplitude as a complementary 

metric. The synchronicity of breathing patterns between users was also a feature of seven biofeedback systems. 
 

Physiological Displays 

Table D.1 shows specific biofeedback forms. In the visual domain (n=41), numerical forms of biofeedback were all 

used to display values of heart rate. Most studies visualized individual HR as an absolute value, while one study 

displayed the average HR across a group of people [99]. On the other hand, graphical biofeedback was used to 

visualize relative activity or progression of a physiological metric over time. Line graphs were used to show 

fluctuations in raw skin conductance [27, 70, 108, 117], changes in brain activity [78] and heart rate [26, 40, 79, 

80] over time. Bar graphs were also used in one instance [89] with a textual caption for context. When used alone, 

text was either used to describe [80] or categorize arousal objectively (e.g. as “elevated”, [45, 88, 89]), or to provide 

an interpretation of psychophysiological state (e.g., “stressed”, [37]). 

 

Table D.1: Biofeedback modalities and forms of reviewed studies 

 
 
 
 
 
 
 

Biofeedback 

modality 

Biofeedback form Studies 

Audio Sound signal [86] 

Body sounds [55, 58, 63, 93, 134] 

Ambient sounds [33, 41, 118, 121] 

Visual Numerical [17, 26, 52, 70, 73, 79, 87, 99, 118, 120, 129] 

Graphical [26, 27, 40, 70, 78–80, 89, 108, 117] 

Textual [37, 45, 80, 88, 89] 

Animation  [2, 17, 31, 37, 40, 45, 52, 67, 70, 73, 75, 78, 82, 94, 118, 122] 

Avatar characteristics [45, 46, 67, 77, 84, 94, 106, 140] 

Scene characteristics [33, 60, 61, 63, 81, 112, 117, 121] 

Lighting [32, 41, 54, 64, 78, 92, 111, 119] 

Actuated movement  [92] 

Haptic Vibration [3, 41, 90, 109, 117, 124, 131] 

Pressure [90] 

Temperature [71, 133] 

Audio-visual Sound, scene effects [63, 115] 

Audio-haptic Sound, vibration [29, 30] 

Visual-haptic Movement [65, 70, 97] 



CHI 2022 

Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback 

Systems and Contexts in HCI 
Clara Moge, Katherine Wang, and Youngjun Cho 

 

E. Characteristics of Studies Included in the Meta-Analysis 

Table E.1: Characteristics of studies included in the meta-analysis 

Study N Age (M±SD) Feedback 

Condition 

Feedback Type Affective 

Assessment 

Dey (2017) [31] 26 39.5(5.2) HR Visualization PANAS 

Dey (2018) [29] 18 30.9(6.8) HR Audio-haptic PANAS 

SAM 

Salminen (2018) 

[112] 

44 27(6.5) EEG Visualization NMSP 

Respiration NMSP 

EEG & respiration NMSP 

Dey (2019) [30] 24 30.2(6.7) HR (active task) Audio-haptic PANAS 

SAM 

HR (passive task) PANAS 

SAM 

Liu (2019) [80] 62 37.47(10.16) HR Visualization PANAS 

Karaosmanoglu 

(2021) [63] 

30 26.03(3.18) HR  Audio/Visual/Audio-visual SAM 

 

F. Forest Plot of Cohen’s d in Post-Intervention Affective Test Results Between Feedback and No 

Feedback Conditions  

 

Figure F.1: This Forest plot depicts the main results of the meta-analysis. Effect sizes of post-intervention affective test results 

between feedback and no feedback conditions are indicated using Cohen’s d. The left side favors control (no feedback) and the 

right side favors the presence of biofeedback (e.g., visual, audio, haptic) from a partner. 
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