1,381 research outputs found
Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest
We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests
Measurements of Anisotropy in the Cosmic Microwave Background Radiation at 0.5 Degree Angular Scales Near the Star Gamma Ursae Minoris
We present results from a four frequency observation of a 6 x 0.6 degree
strip of the sky centered near the star Gamma Ursae Minoris during the fourth
flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observation was
made with a 1.4 degree peak-to-peak sinusoidal chop in all bands. The FWHM beam
sizes were 0.55 +/- 0.05 degrees at 3.5 cm-1 and 0.75 +/-0.05 degrees at 6, 9,
and 14 cm-1. During this observation significant correlated structure was
observed at 3.5, 6 and 9 cm-1 with amplitudes similar to those observed in the
GUM region during the second and third flights of MAX. The frequency spectrum
is consistent with CMB and inconsistent with thermal emission from interstellar
dust. The extrapolated amplitudes of synchrotron and free-free emission are too
small to account for the amplitude of the observed structure. If all of the
structure is attributed to CMB anisotropy with a Gaussian autocorrelation
function and a coherence angle of 25', then the most probable values of
DeltaT/TCMB in the 3.5, 6, and 9 cm-1 bands are 4.3 (+2.7, -1.6) x 10-5, 2.8
(+4.3, -1.1) x 10-5, and 3.5 (+3.0, -1.6) x 10-5 (95% confidence upper and
lower limits), respectively.Comment: 16 pages, postscrip
Measurements of Anisotropy in the Cosmic Microwave Background Radiation at Degree Angular Scales Near the Stars Sigma Hercules and Iota Draconis
We present results from two four-frequency observations centered near the
stars Sigma Hercules and Iota Draconis during the fourth flight of the
Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 x
0.6-degree strips of the sky with 1.4-degree peak to peak sinusoidal chop in
all bands. The FWHM beam sizes were 0.55+/-0.05 degrees at 3.5 cm-1 and a
0.75+/-0.05 degrees at 6, 9, and 14 cm-1. Significant correlated structures
were observed at 3.5, 6 and 9 cm-1. The spectra of these signals are
inconsistent with thermal emission from known interstellar dust populations.
The extrapolated amplitudes of synchrotron and free-free emission are too small
to account for the amplitude of the observed structures. If the observed
structures are attributed to CMB anisotropy with a Gaussian autocorrelation
function and a coherence angle of 25', then the most probable values are
DT/TCMB = (3.1 +1.7-1.3) x 10^-5 for the Sigma Hercules scan, and DT/TCMB =
(3.3 +/- 1.1) x 10^-5 for the Iota Draconis scan (95% confidence upper and
lower limits). Finally a comparison of all six MAX scans is presented.Comment: 13 pages, postscript file, 2 figure
Multiple solutions to a magnetic nonlinear Choquard equation
We consider the stationary nonlinear magnetic Choquard equation
[(-\mathrm{i}\nabla+A(x))^{2}u+V(x)u=(\frac{1}{|x|^{\alpha}}\ast |u|^{p})
|u|^{p-2}u,\quad x\in\mathbb{R}^{N}%] where is a real valued vector
potential, is a real valued scalar potential ,
and . \ We assume that both and are
compatible with the action of some group of linear isometries of
. We establish the existence of multiple complex valued
solutions to this equation which satisfy the symmetry condition where
is a given group homomorphism into the unit
complex numbers.Comment: To appear on ZAM
Optical binding of particles with or without the presence of a flat dielectric surface
Optical fields can induce forces between microscopic objects, thus giving
rise to new structures of matter. We study theoretically these optical forces
between two spheres, either isolated in water, or in presence of a flat
dielectric surface. We observe different behavior in the binding force between
particles at large and at small distances (in comparison with the wavelength)
from each other. This is due to the great contribution of evanescent waves at
short distances. We analyze how the optical binding depends of the size of the
particles, the material composing them, the wavelength and, above all, on the
polarization of the incident beam. We also show that depending on the
polarization, the force between small particles at small distances changes its
sign. Finally, the presence of a substrate surface is analyzed showing that it
only slightly changes the magnitudes of the forces, but not their qualitative
nature, except when one employs total internal reflection, case in which the
particles are induced to move together along the surface.Comment: 8 pages, 9 figures, and 1 tabl
Nucleation in Systems with Elastic Forces
Systems with long-range interactions when quenced into a metastable state
near the pseudo-spinodal exhibit nucleation processes that are quite different
from the classical nucleation seen near the coexistence curve. In systems with
long-range elastic forces the description of the nucleation process can be
quite subtle due to the presence of bulk/interface elastic compatibility
constraints. We analyze the nucleation process in a simple 2d model with
elastic forces and show that the nucleation process generates critical droplets
with a different structure than the stable phase. This has implications for
nucleation in many crystal-crystal transitions and the structure of the final
state
Determination of Inflationary Observables by Cosmic Microwave Background Anisotropy Experiments
Inflation produces nearly Harrison-Zel'dovich scalar and tensor perturbation
spectra which lead to anisotropy in the cosmic microwave background (CMB). The
amplitudes and shapes of these spectra can be parametrized by , , and where and are the scalar and
tensor contributions to the square of the CMB quadrupole and and
are the power-lawspectral indices. Even if we restrict ourselves to information
from angles greater than one third of a degree, three of these observables can
be measured with some precision. The combination can be
known to better than . The scalar index can be determined to
better than . The ratio can be known to about for and slightly better for smaller . The precision with which
can be measured depends weakly on and strongly on . For
can be determined with a precision of about . A
full-sky experiment with a beam using technology available today, similar
to those being planned by several groups, can achieve the above precision. Good
angular resolution is more important than high signal-to-noise ratio; for a
given detector sensitivity and observing time a smaller beam provides
significantly more information than a larger beam. The uncertainties in
and are roughly proportional to the beam size. We briefly discuss the
effects of uncertainty in the Hubble constant, baryon density, cosmological
constant and ionization history.Comment: 28 pages of uuencoded postscript with 8 included figures. A
postscript version is also available by anonymous ftp at
ftp://astro.uchicago.edu/pub/astro/knox/fullsim.p
Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations
We use the zero-temperature random-field Ising model to study hysteretic
behavior at first-order phase transitions. Sweeping the external field through
zero, the model exhibits hysteresis, the return-point memory effect, and
avalanche fluctuations. There is a critical value of disorder at which a jump
in the magnetization (corresponding to an infinite avalanche) first occurs. We
study the universal behavior at this critical point using mean-field theory,
and also present preliminary results of numerical simulations in three
dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747
Distant agricultural landscapes
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The final publication is available at Springer via http://dx.doi.org/10.1007/s11625-014-0278-0This paper examines the relationship between the development of the dominant industrial food system and its associated global economic drivers and the environmental sustainability of agricultural landscapes. It makes the case that the growth of the global industrial food system has encouraged increasingly complex forms of “distance” that separate food both geographically and mentally from the landscapes on which it was produced. This separation between food and its originating landscape poses challenges for the ability of more localized agricultural sustainability initiatives to address some of the broader problems in the global food system. In particular, distance enables certain powerful actors to externalize ecological and social costs, which in turn makes it difficult to link specific global actors to particular biophysical and social impacts felt on local agricultural landscapes. Feedback mechanisms that normally would provide pressure for improved agricultural sustainability are weak because there is a lack of clarity regarding responsibility for outcomes. The paper provides a brief illustration of these dynamics with a closer look at increased financialization in the food system. It shows that new forms of distancing are encouraged by the growing significance of financial markets in global agrifood value chains. This dynamic has a substantial impact on food system outcomes and ultimately complicates efforts to scale up small-scale local agricultural models that are more sustainable.The Trudeau Foundation || Social Sciences and Humanities Research Council of Canad
- …