135 research outputs found

    Germline mutations in the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas.

    Get PDF
    Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.post-print535 K

    Germline loss-of-function variants in the base-excision repair gene MBD4 cause a Mendelian recessive syndrome of adenomatous colorectal polyposis and acute myeloid leukaemia

    Full text link
    Inherited defects in base-excision repair (BER) predispose to adenomatous polyposis and colorectal cancer (CRC), yet our understanding of this important DNA repair pathway remains incomplete. By combining detailed clinical, histological and molecular profiling, we reveal biallelic germline loss-of-function (LOF) variants in the BER gene MBD4 to predispose to adenomatous polyposis and -uniquely amongst CRC predisposition syndromes- to myeloid neoplasms. Neoplasms from MBD4-deficient patients almost exclusively accumulate somatic CpG>TpG mutations, resembling mutational signature SBS1. MBD4-deficient adenomas harbour mutations in known CRC driver genes, although AMER1 mutations were more common and KRAS mutations less frequent. We did not find an increased risk for colorectal tumours in individuals with a monoallelic MBD4 LOF variant. We suggest that this condition should be termed MBD4-associated neoplasia syndrome (MANS) and that MBD4 is included in testing for the genetic diagnosis of polyposis and/or early-onset AM

    Germline MBD4 deficiency causes a multi-tumor predisposition syndrome

    Full text link
    We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management. Keywords: 5′-methylcytosine deamination; colorectal cancer; mutational signature; mutator phenotype; polyposi

    Germline genetic variation and predicting immune checkpoint inhibitor induced toxicity

    Get PDF
    Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of various cancer types. ICIs reinstate T-cell function to elicit an anti-cancer immune response. The resulting immune response can however have off-target effects which manifest as autoimmune type serious immune-related adverse events (irAE) in ~10–55% of patients treated. It is currently challenging to predict both who will experience irAEs and to what severity. Identification of patients at high risk of serious irAE would revolutionise patient care. While the pathogenesis driving irAE development is still unclear, host genetic factors are proposed to be key determinants of these events. This review presents current evidence supporting the role of the host genome in determining risk of irAE. We summarise the spectrum and timing of irAEs following treatment with ICIs and describe currently reported germline genetic variation associated with expression of immuno-modulatory factors within the cancer immunity cycle, development of autoimmune disease and irAE occurrence. We propose that germline genetic determinants of host immune function and autoimmune diseases could also explain risk of irAE development. We also endorse genome-wide association studies of patients being treated with ICIs to identify genetic variants that can be used in polygenic risk scores to predict risk of irAE

    Phenome-wide Mendelian randomisation analysis of 378,142 cases reveals risk factors for eight common cancers

    Get PDF
    For many cancers there are only a few well-established risk factors. Here, we use summary data from genome-wide association studies (GWAS) in a Mendelian randomisation (MR) phenome-wide association study (PheWAS) to identify potentially causal relationships for over 3,000 traits. Our outcome datasets comprise 378,142 cases across breast, prostate, colorectal, lung, endometrial, oesophageal, renal, and ovarian cancers, as well as 485,715 controls. We complement this analysis by systematically mining the literature space for supporting evidence. In addition to providing supporting evidence for well-established risk factors (smoking, alcohol, obesity, lack of physical activity), we also find sex steroid hormones, plasma lipids, and telomere length as determinants of cancer risk. A number of the molecular factors we identify may prove to be potential biomarkers. Our analysis, which highlights aetiological similarities and differences in common cancers, should aid public health prevention strategies to reduce cancer burden. We provide a R/Shiny app to visualise findings

    The clinical features of polymerase proof-reading associated polyposis (PPAP) and recommendations for patient management

    Get PDF
    Pathogenic germline exonuclease domain (ED) variants of POLE and POLD1 cause the Mendelian dominant condition polymerase proof-reading associated polyposis (PPAP). We aimed to describe the clinical features of all PPAP patients with probably pathogenic variants. We identified patients with a variants mapping to the EDs of POLE or POLD1 from cancer genetics clinics, a colorectal cancer (CRC) clinical trial, and systematic review of the literature. We used multiple evidence sources to separate ED variants into those with strong evidence of pathogenicity and those of uncertain importance. We performed quantitative analysis of the risk of CRC, colorectal adenomas, endometrial cancer or any cancer in the former group. 132 individuals carried a probably pathogenic ED variant (105 POLE, 27 POLD1). The earliest malignancy was colorectal cancer at 14. The most common tumour types were colorectal, followed by endometrial in POLD1 heterozygotes and duodenal in POLE heterozygotes. POLD1-mutant cases were at a significantly higher risk of endometrial cancer than POLE heterozygotes. Five individuals with a POLE pathogenic variant, but none with a POLD1 pathogenic variant, developed ovarian cancer. Nine patients with POLE pathogenic variants and one with a POLD1 pathogenic variant developed brain tumours. Our data provide important evidence for PPAP management. Colonoscopic surveillance is recommended from age 14 and upper-gastrointestinal surveillance from age 25. The management of other tumour risks remains uncertain, but surveillance should be considered. In the absence of strong genotype–phenotype associations, these recommendations should apply to all PPAP patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10689-021-00256-y

    Increased somatic mutation burdens in normal human cells due to defective DNA polymerases.

    Get PDF
    Funder: Wellcome PhD StudentshipFunder: Jean Shank/Pathological Society Intermediate FellowshipFunder: Wellcome Clinical PhD fellowshipMutation accumulation in somatic cells contributes to cancer development and is proposed as a cause of aging. DNA polymerases Pol ε and Pol δ replicate DNA during cell division. However, in some cancers, defective proofreading due to acquired POLE/POLD1 exonuclease domain mutations causes markedly elevated somatic mutation burdens with distinctive mutational signatures. Germline POLE/POLD1 mutations cause familial cancer predisposition. Here, we sequenced normal tissue and tumor DNA from individuals with germline POLE/POLD1 mutations. Increased mutation burdens with characteristic mutational signatures were found in normal adult somatic cell types, during early embryogenesis and in sperm. Thus human physiology can tolerate ubiquitously elevated mutation burdens. Except for increased cancer risk, individuals with germline POLE/POLD1 mutations do not exhibit overt features of premature aging. These results do not support a model in which all features of aging are attributable to widespread cell malfunction directly resulting from somatic mutation burdens accrued during life

    Modifiable pathways for colorectal cancer : a mendelian randomisation analysis

    Get PDF
    Background Epidemiological studies have linked lifestyle, cardiometabolic, reproductive, developmental, and inflammatory factors to the risk of colorectal cancer. However, which specific factors affect risk and the strength of these effects are unknown. We aimed to examine the relationship between potentially modifiable risk factors and colorectal cancer. Methods We used a random-effects model to examine the relationship between 39 potentially modifiable risk factors and colorectal cancer in 26 397 patients with colorectal cancer and 41 481 controls (ie, people without colorectal cancer). These population data came from a genome-wide association study of people of European ancestry, which was amended to exclude UK BioBank data. In the model, we used genetic variants as instruments via two-sample mendelian randomisation to limit bias from confounding and reverse causation. We calculated odds ratios per genetically predicted SD unit increase in each putative risk factor (OR SD) for colorectal cancer risk. We did mendelian randomisation Egger regressions to identify evidence of potential violations of mendelian randomisation assumptions. A Bonferroni-corrected threshold of p=1.3 x 10(-3) was considered significant, and p values less than 0.05 were considered to be suggestive of an association. Findings No putative risk factors were significantly associated with colorectal cancer risk after correction for multiple testing. However, suggestive associations with increased risk were noted for genetically predicted body fat percentage (OR SD 1.14 [95% CI 1.03-1.25]; p=0.0086), body-mass index (1.09 [1.01-1.17]; p=0.023), waist circumference (1.13 [1.02-1.26]; p=0.018), basal metabolic rate (1.10 [1.03-1.18]; p=0.0079), and concentrations of LDL cholesterol (1.14 [1.04-1.25]; p=0.0056), total cholesterol (1.09 [1.01-1.18]; p=0.025), circulating serum iron (1.17 [1.00-1.36]; p=0.049), and serum vitamin B12 (1.21 [1.04-1.42]; p=0.016), although potential pleiotropy among genetic variants used as instruments for vitamin B12 constrains the finding. A suggestive association was also noted between adult height and increased risk of colorectal cancer (OR SD 1.04 [95% CI 1.00-1.08]; p=0.032). Low blood selenium concentration had a suggestive association with decreased risk of colorectal cancer (OR SD 0.85 [95% CI 0.75-0.96]; p=0.0078) based on a single variant, as did plasma concentrations of interleukin-6 receptor subunit a (also based on a single variant; 0.98 [0.96-1.00]; p=0.035). Risk of colorectal cancer was not associated with any sex hormone or reproductive factor, serum calcium, or circulating 25-hydroxyvitamin D concentrations. Interpretation This analysis identified several modifiable targets for primary prevention of colorectal cancer, including lifestyle, obesity, and cardiometabolic factors, that should inform public health policy. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
    corecore