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Phenome-wide Mendelian randomisation
analysis of 378,142 cases reveals risk factors
for eight common cancers

Molly Went 1,11 , Amit Sud 1,2,3,4,5,11, Charlie Mills 1,11, Abi Hyde 1,6,11,
Richard Culliford1, Philip Law 1, Jayaram Vijayakrishnan 1, Ines Gockel 7,
Carlo Maj 8, Johannes Schumacher 8, Claire Palles 9, Martin Kaiser 1,10 &
Richard Houlston 1

For many cancers there are only a few well-established risk factors. Here, we
use summary data from genome-wide association studies (GWAS) in a Men-
delian randomisation (MR) phenome-wide association study (PheWAS) to
identify potentially causal relationships for over 3,000 traits. Our outcome
datasets comprise 378,142 cases across breast, prostate, colorectal, lung,
endometrial, oesophageal, renal, and ovarian cancers, as well as 485,715 con-
trols. We complement this analysis by systematically mining the literature
space for supporting evidence. In addition to providing supporting evidence
for well-established risk factors (smoking, alcohol, obesity, lack of physical
activity), we alsofind sex steroid hormones, plasma lipids, and telomere length
as determinants of cancer risk. A number of the molecular factors we identify
may prove to be potential biomarkers. Our analysis, which highlights aetio-
logical similarities and differences in common cancers, should aid public
health prevention strategies to reduce cancer burden. We provide a R/Shiny
app to visualise findings.

Cancer is currently the third major cause of death with an estimated
18.1 million new cases and nearly 10 million cancer deaths in 20201. By
2030 it is predicted there are likely to be 26 million new cancer cases
and 17 million cancer-related deaths annually2. Such projections have
renewed efforts to identify risk factors to inform cancer prevention
programmes.

For many cancers, despite significant epidemiological research,
there are few well-established risk factors. Although randomised-
controlled trials (RCTs) are the gold standard for establishing causal
relationships, they are often impractical or unfeasible because of cost,
time, and ethical issues. Conversely, case-control studies can be

complicated by biases such as reverse causation and confounding.
Mendelian randomisation (MR) is an analytical strategy that uses
germline genetic variants as instrumental variables (IVs) to infer
potentially causal relationships (Fig. 1A)3. The random assortment of
these genetic variants at conception mitigates against reverse causa-
tion bias. Moreover, in the absence of pleiotropy (i.e. the presence of
an association between variants and disease through additional path-
ways), MR can provide unconfounded disease risk estimates. Eluci-
dating disease causality usingMR is gaining popularity especially given
the availability of data from large genome-wide association studies
(GWAS) and well-developed analytical frameworks3.
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Most MR studies of cancer have been predicated on assumptions
about disease aetiology or have sought to evaluate purported asso-
ciations from conventional observational epidemiology3,4. A recently
proposed agnostic strategy, termed MR-PheWAS, integrates the
phenome-wide association study (PheWAS) with MR methodology to
identify potential causal relationships considering hitherto previously
unexamined traits5.

To identify potentially causal relationships for eight common
cancers: breast, prostate, colorectal (CRC), lung, endometrial, oeso-
phageal, renal cell carcinoma (RCC), ovarian, and reveal intermediates
of risk, we conducted a MR-PheWAS study utilising 378,142 cases and
485,715 controls. We integrated findings with a systematic mining of
the literature space to provide supporting evidence and derive a more
comprehensive description of disease aetiology (Fig. 1B)6.

Results
Phenotypes and genetic instruments
After filtering we analysed 3661 traits, proxied by 336,191 genetic
variants in conjunction with summary genetic data from published
GWAS of breast, prostate, colorectal, lung, endometrial, oesophageal,
renal, and ovarian cancers (Table 1; Supplementary Data 1). The num-
ber of single nucleotide polymorphisms (SNPs) used as genetic
instruments for each trait ranged from one to 1335. Figure 2 shows the
power of our MR study to identify potentially causal relationships
between each of the genetically defined traits and each cancer type.
Themedianproportionof variance explained (PVE) by SNPsused as IVs
for each of the 3,661 traits evaluated as risk factors was 3.4%
(0.01–84%). Our power to demonstrate relationships a priori for each
cancer type reflects in part inevitably the size of respective GWAS
datasets (Supplementary Data 2).

Causal associations predicted by MR
To aid interpretation, we grouped traits related to established
cancer risk factors (i.e. smoking, obesity and alcohol) and those
for which current evidence is inconclusive into the following
categories, using a similar approach to Markozannes et al.4: cardi-
ometabolic; dietary intake; anthropometrics; immune and inflam-
matory factors; fatty acid (FA) and lipoprotein metabolism;
lifestyle, reproduction, education and behaviour; metabolomics
and proteomics; miscellaneous.

Given the large number of traits being evaluated, we categorised
the support for potentially causal relationships between non-binary
traits and cancers into four hierarchical levels of statistical significance
a priori: robust, probable, suggestive, and non-significant (Fig. 3;
Methods). Out of the 27,066 graded associations, MR analyses pro-
vided robust evidence for a potentially causal relationship with 123
phenotypes (0.5% of total MR analyses), 174 with probable evidence
(0.6% of total), 1652 with suggestive evidence (6% of total). Across the
eight cancer types, the largest number of robust associations were
observed for endometrial cancer with 37 robust associations, followed
by RCC (n = 32), CRC (n = 21), lung (n = 20), breast (n = 10), oesopha-
geal (n = 3) andprostate cancer (n = 1). No robustMRassociationswere
observed for ovarian cancer (Supplementary Data 3).

Across all the cancer types, anthropometric traits showed the
highest number of robust relationships (n = 32; 0.1%), followed by
lifestyle, reproduction, education, and behaviour (n = 17; 0.06%). No
robust associations were observed for dietary intake or cardiometa-
bolic categories (Supplementary Data 3).

To visualise the strength anddirection of effect of the relationship
between each of the traits examined and risk of each cancer type and,
where appropriate, their respective subtypeswe provide aR/Shiny app
(https://software.icr.ac.uk/app/mrcan). Figure 4 shows a screenshot of
the app for selected traits across the eight different types of cancer.

Many of the identified potentially causal relationships, especially
those that were statistically robust or probable, have been reported in
previous MR studies and are related to established risk factor
categories4,7,8. Notably: (i) the relationship between metrics of
increased body mass index (BMI) with an increased risk of colorectal
(Robust, ORSD = 1.19, 95% CI: 1.11–1.27, P = 2.01 × 10−7), lung (Suggestive,
ORSD = 1.22, 95%CI: 1.11–1.34, P = 3.25 × 10−5), renal (Robust, ORSD = 1.63,
95% CI: 1.44–1.85, P = 2.19 × 10−14), endometrial (Robust, ORSD = 1.90,
95% CI: 1.67–2.15, P = 3.92 × 10−23) and ovarian (Suggestive, ORSD = 1.11,
95% CI: 1.01–1.22, P = 2.98 × 10−2) cancers9; (ii) cigarette smoking with
an increased risk of lung cancer10; (iii) traits related to higher alcohol
consumption and increased risk of oesophageal (Suggestive,
ORSD = 2.69, 95% CI: 1.58–4.49, P = 2.76 × 10−4), CRC (Suggestive,
ORSD = 1.39, 95% CI: 1.01–1.91, P = 4.53 × 10−2), lung (Probable,
ORSD = 1.55, 95% CI: 1.18–2.04, P = 1.49 ×10−3), RCC (Suggestive,
ORSD = 1.25, 95% CI: 1.03 - 1.53, P = 2.42 × 10−2), endometrial (Suggestive,
ORSD = 1.23, 95%CI: 1.01–1.8515, P = 4.41 × 10−2) and ovarian (Suggestive,

Fig. 1 | Principles of Mendelian randomisation (MR) and study overview.
A Assumptions inMR that need to be satisfied to derive unbiased causal effect
estimates. Dashed lines represent direct causal and potential pleiotropic effects
that would violate MR assumptions. A, indicates genetic variants used as IVs are
strongly associatedwith the trait; B, indicates genetic variants only influencecancer
risk through the trait; C, indicates genetic variants are not associated with any
measured or unmeasured confounders of the trait-cancer relationship. SNP, single-

nucleotide polymorphism; B Study overview. Genetic variants serving as instru-
ments for exposure traits under investigation were identified from MRBase or
PubMed. GWAS data for the eight cancers was acquired and MR analysis was per-
formed. Results were triangulated through literaturemining to provide supporting
evidence for potentially causal relationships. Created with BioRender.com. GWAS
genome-wide association study.
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ORSD = 1.22, 95% CI: 1.05–1.40, P = 7.32 × 10−3) cancers11; (iv) traits
indicative of reducedphysical activity and sedentarybehaviourwith an
increased risk of multiple cancers, including breast, lung, colorectal
and endometrial12. As anticipated, exposure traits pertaining to cigar-
ette smoking were not causally related to lung cancer in never smo-
kers. Paradoxically, but as reported in previousMR analyses, increased
BMI was associated with reduced risk of prostate (Suggestive,
ORSD =0.82, 95% CI: 0.70–0.95, P = 1.03 × 10−2) and breast (Probable,
ORSD =0.84, 95% CI: 0.76–0.93, P = 8.40 ×10−4) cancer, and an inverse
relationship between smoking and prostate cancer risk was shown9,13.
Our analysis also supports the reported relationship between higher
levels of sex hormone-binding globulin with reduced endometrial
cancer risk (Robust, ORSD =0.81, 95%CI: 0.74–0.89, P = 9.00× 10−6) and
a relationship between testosterone with risk of endometrial (Prob-
able, ORSD = 1.48, 95% CI: 1.12–1.96, P = 5.32 × 10−3) and breast (Prob-
able, ORSD = 1.24, 95% CI: 1.09–1.42, P = 1.43 × 10−3) cancer14,15. Notably,
exposure traits related to testosterone levels were only predicted to be
causally associated with luminal-A and luminal-B breast cancer
subtypes.

We found associations between genetically predicted high serum
vitamin B12 with increased risks of CRC (Suggestive, ORSD = 1.09, 95%

CI: 1.01–1.18, P = 2.53 × 10−2) and prostate (Suggestive, ORSD = 1.08, 95%
CI: 1.02–1.14, P = 8.87 × 10−3) cancer, higher serum calcium (Suggestive,
ORSD = 1.19, 95% CI: 1.05–1.35, P = 5.92 × 10−3) and 25-hydroxyvitamin-D
(Suggestive, ORSD = 1.18, 95% CI: 1.00–1.38, P = 4.63 × 10−2) with an
increased risk of RCC, higher blood selenium with decreased risks of
CRC (Suggestive, ORSD =0.91, 95% CI: 0.85–0.98, P = 9.49 × 10−3) and
oesophageal (Suggestive, ORSD =0.84, 95% CI: 0.72–0.99, P = 3.42 ×
10−2) cancer and higher methionine (Suggestive, ORSD = 0.09, 95% CI:
0.01–0.99, P = 4.90 × 10−2) and zinc (Suggestive, ORSD = 0.94, 95% CI:
0.89–0.99, P = 1.77 × 10−2) with reduced CRC risk. We observed no
association between genetically predicted blood levels of circulating
carotenoids or vitaminsB6andE for anyof the cancers.With respect to
dietary intake our analysis demonstrated associations between
genetically predicted higher levels of coffee intake (Probable,
ORSD =0.67, 95% CI: 0.55–0.82, P = 1.03 × 10−4), oily fish (Probable,
ORSD =0.66, 95% CI: 0.52–0.84, P = 5.41 ×10−4), and cheese intake
(Probable, ORSD =0.75, 95%CI: 0.64–0.89, P = 1.08 × 10−3) with reduced
CRC risk and associations between genetically predicted beef (Sug-
gestive, ORSD = 1.65, 95% CI: 1.05–2.60, P = 3.07 × 10−2) and poultry
(Suggestive, ORSD = 2.10, 95% CI: 1.06–4.16, P = 3.24 × 10−2) intake and
elevated CRC risk.

Table 1 | Details of cancer genome-wide association studies used in the Mendelian randomisation analysis

Cancer Cases Controls PubMed ID No. of contributing
studies

GWAS catalogue ID

Breast 133384 113789 32424353 82 GCST010098 GCST010099 GCST010100

Breast triple negative 2006 20815

Breast luminal A 7325

Breast luminal B 1682

Breast HER2 enriched 718

Breast HER2 negative luminal B 1779

Colorectal 73673 86854 36539618 16 GCST90129505

Endometrial 8758 46126 30093612 17 GCST006465

Lung 29266 56450 28604730 26 GCST004744 GCST004746 GCST004747 GCST004748
GCST004749 GCST004750Lung ever-smoked 23223 16964

Lung never-smoked 2355 7504

Lung adenocarcinoma 11273 55483

Lung squamous cell carcinoma 7426 55627

Lung small cell lung cancer 2664 21444

Oesophageal 16790 32476 35882562 5 NA

Ovarian 26293 68502 28346442 77 GCST004415 GCST004416 GCST004417 GCST004418
GCST004419 GCST004461 GCST004462 GCST004478
GCST004479 GCST004480 GCST004481

Ovarian invasive high grade serous 13037 40941

Ovarian all serous 16003 40941

Ovarian invasive mucinous 1417 40941

Ovarian all mucinous 2566 40941

Ovarian all low malignant potential 3103 40941

Ovarian invasive low grade serous and
low malignant potential serous

2966 40941

Ovarian invasive low grade ser-
ous cases

1012 40941

Ovarian endometrioid 2810 40941

Ovarian clear cell 1366 40941

Ovarian low malignant potential
serous

1954 40941

Ovarian low malignant potential
mucinous

1149 40941

Prostate 79194 61112 29892016 8 GCST006085

Renal 10784 20406 28598434 5 GCST004710

The number of cases and controls, the number of studies contributing to the meta-analyses and the associated publication and GWAS catalogue IDs are provided for each cancer GWAS. Where
applicable, the number of cases and controls in given histological subtypes are also provided.
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In terms of glucose homeostasis, no relationship between
genetically predicted blood glucose or glycated haemoglobin was
shown for any of the eight cancers. However, higher levels of geneti-
cally predicted levels of fasting insulin (Probable, ORSD = 1.78, 95% CI:
1.25–2.52, P = 1.33 × 10−3) and insulin growth factor 1 (IGF-1) (Suggestive,
ORSD = 1.06, 95% CI: 1.01–1.12, P = 3.26 × 10−2) and lower proinsulin
(Probable, ORSD = 0.89, 95% CI: 0.82 - 0.96, P = 3.09 × 10−3) showed
associations with CRC. Additionally, an association between proinsulin
and RCC (Suggestive, ORSD = 0.80, 95% CI: 0.67–0.96, P = 1.50 × 10−2),
fasting insulin and lung (Suggestive, ORSD = 1.40, 95% CI: 1.03 - 1.90,
P = 3.29 × 10−2) and endometrial (Suggestive, ORSD = 1.76, 95% CI:
1.02–3.03, P = 4.24 × 10−2) cancers, and IGF-1 levels and breast cancer
(Probable, ORSD = 1.07, 95% CI: 1.02–1.13, P = 6.21 × 10−3) was observed.

Amongst genetically predicted higher levels of lipoproteins, the
only associations were between high density lipoprotein cholesterol
(HDL-C) and breast cancer risk (Probable, ORSD = 1.08, 95% CI:
1.03–1.12, P = 6.28 × 10−4), low density lipoprotein cholesterol (LDL-C)
an elevated risk of CRC (Suggestive, ORSD = 1.10, 95% CI: 1.01–1.20,
P = 2.18 × 10−2), and total cholesterol and increasing ovarian cancer risk
(Suggestive, ORSD = 1.05, 95% CI: 1.01–1.09, P = 2.67 × 10−2). Genetically
predicted levels of plasma FAs showed an association with reduced
cancer risk. Specifically, for the omega-6 polyunsaturated FAs,
increased levels of arachidonic acid (20:4n6) (Suggestive, ORSD = 1.04,
95% CI: 1.02–1.05, P = 6.11 × 10−5) and gamma-linoleic acid (18:3n6)
(Suggestive, ORSD = 35.29, 95% CI: 13.65–91.24, P = 1.94 × 10−13) and
lower levels of linoleic acid (18:2n6) (Suggestive, ORSD = 0.96, 95% CI:
0.95–0.97, P = 3.11 × 10−13) and adrenic acid (22:4n6) (Suggestive,
ORSD = 3.28, 95% CI: 2.34–4.59, P = 5.88 × 10−12) with increased risk of
CRC; for the omega-3 polyunsaturated FAs, linoleic acid (Suggestive,

ORSD = 1.02, 95% CI: 1.00–1.04, P = 3.05 × 10−2) and eicosapentaenoic
acid (Suggestive, ORSD = 0.42, 95% CI: 0.19–0.94, P = 3.44 × 10−2)
showed an association with ovarian cancer risk while arachidonic acid
was associated with endometrial cancer (Suggestive, ORSD =0.98, 95%
CI: 0.97–0.99, P = 2.83 ×10−3). Performing a leave-one-out and single
SNP analysis (Supplementary Data 4 and 5, respectively) we found,
similar to previously published work, that the majority of associations
with respect to omega-3 and omega-6 fatty acids are driven by corre-
lated associations within the FADS locus16,17.

A relationship between longer lymphocyte telomere length (LTL)
and an increased risk of six of the eight cancer types was identified -
RCC (Robust, ORSD = 2.01, 95% CI: 1.65–2.45, P = 3.27 × 10−12), lung
(Robust, ORSD = 1.61, 95% CI: 1.41–1.84, P = 2.48 × 10−12), breast (Prob-
able, ORSD = 1.12, 95% CI: 1.04–1.20, P = 2.07 × 10−3), prostate (Probable,
ORSD = 1.25, 95% CI: 1.10–1.43, P = 9.77 × 10−4), colorectal (Suggestive,
ORSD = 1.13, 95% CI: 1.00–1.28, P = 4.24 × 10−2) and ovarian cancer
(Suggestive, ORSD = 1.18, 95% CI: 1.05–1.33, P = 4.88 × 10−3).

In addition to a robust association between higher HLA-DR den-
dritic plasmacytoid levels and risk of prostate cancer (ORSD = 1.05, 95%
CI: 1.03–1.06, P = 5.22 × 10−10), 26 probable associations between
genetically predicted levels of other circulating immune and inflam-
matory factors were shown across the cancers studied. These included
higher levels of IL-18 with reduced risk of lung cancer (Probable,
ORSD =0.89, 95% CI: 0.83–0.96, P = 2.00 × 10−3), with specificity for
lung cancer in never smokers. For proteomic traits, we conducted a
Bayesian colocalisation analysis to determine whether genetic variants
influencing protein levels and cancer risk are sharedby considering the
strongest proteomic associations with a clear gene target and a cis-IV
(i.e. within 1Mb; Methods) with P-value < 1 × 10−6 in the outcome

Oesophageal Ovarian Prostate Renal

Breast Colorectal Endometrial Lung

1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5

25

50

75

100

25
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Odds Ratio
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w
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 %
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log(F-stat)

Fig. 2 | Power to predict causal relationships in the Mendelian randomisation
analysis across the eight different cancers. Each line represents an individual trait
with the line colour indicating the F-statistic, ameasureof instrument strength. The

analysis of most traits is well powered across a modest range of odds ratios. Gen-
erally, better powered traits are those with a higher F-statistic. F-stat: F-statistic.
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cancer. We identified KDEL motif-containing protein 2 (KDELC2) and
RCC, as well as Copine-1 (CPNE1) and Immunoglobulin superfamily
containing leucine-rich repeat protein 2 (ISLR2) and breast cancer as
having a high posterior probability of a shared variant (i.e. PPH4 > 0.8).
In contrast, Kunitz-type protease inhibitor 2 (SPINT2) and prostate
cancer, as well as Semaphorin-3G (SEMA3G) and CRC, were shown to
have distinct variants at the gene target (i.e. PPH3 > 0.8; Supplementary
Data 6). Results for the IV atHisto-bloodgroupABO system transferase
(ABO) with ovarian cancer were indeterminate (PPH4 = 0.67 and
PPH3 = 0.33).

Our MR analysis provides support for a relationship between
rectal polyps and CRC (β = 95.59, Standard Error (SE) = 4.99, P = 6.88
× 10−82)18, benign breast disease and breast cancer19, and oesophageal
reflux with risk of oesophageal cancer (β = 0.27, SE = 0.08, P = 1.30 ×
10−3) (Supplementary Data 7)20. Other associations included possible
relationships between pulmonary fibrosis and lung cancer21, as well
as the relationship between a diagnosis of schizophrenia and lung
cancer (β = 0.10, SE = 0.04, P = 2.89 × 10−2), which has been previously
reported in conventional epidemiological studies22. It was note-
worthy, however, that we did not find evidence to support the pur-
ported relationship between hypertension and risk of developing
RCC23. Similarly, our analysis did not provide evidence to support a
causal relationship between either type 1 or type 2 diabetes and an
increased cancer risk.

Multivariable MR of biologically related traits
Selected traits within our analysis may show pleiotropic effects with
other traits and work by Burgess et al. 24 has shown that MR can only
assess the causal effect of a risk factor on an outcome by using genetic
variants that are solely associated with the risk factor of interest. To
address pleiotropy we performed multivariable MR (MVMR) as a form
of mediation analysis focusing on known biologically related traits.
Specifically, we examined the role of IGF-1 and height on breast and

colorectal cancer risk25; lipid traits on breast and colorectal cancer
risk26,27; and fasting insulin, sex hormone-binding globulin levels
(SHBG), BMI and testosterone on endometrial cancer risk28 (Supple-
mentary Data 8). In the MVMR analysis of HDL-C, LDL-C and trigly-
ceride levels, we found the relationship of increasing HDL cholesterol
with breast cancer risk and increasing LDL-Cwith colorectal cancer risk
remained significant in a model accounting for these biologically
related traits (ORMVMR = 1.06, PMVMR =0.03 and ORMVMR = 1.09,
PMVMR =0.04, respectively). Considering height and IGF-1 and their
association with CRC risk and breast cancer risk, IGF-1 remained sig-
nificantly associated with breast cancer risk (ORMVMR = 1.06,
PMVMR =0.049), while height remained significantly associated with
colorectal cancer risk (ORMVMR = 1.06, PMVMR =0.045). In contrast IGF-1
became non-significant (P =0.16), which may suggest that the rela-
tionship between IGF-1 levels and CRC is mediated through the rela-
tionship with height. Finally, MVMR of fasting insulin, SHBG, BMI and
testosterone and their effect on endometrial cancer, attenuated the
significance of association (P >0.5) of fasting insulin and bioavailable
testosterone with the outcome, while SHBG and BMI remained sig-
nificant, but with a modest decrease in effect size (ORMVMR =0.61,
PMVMR =0.02 and ORMVMR = 1.65, PMVMR = 6.37 × 10−5). Hence this sug-
gests that bioavailable testosterone and fasting insulin do not have an
independent effect on endometrial cancer risk and the associations are
likely to be mediated, at least in part, through SHBG and BMI.

Literature-mined support for MR defined relationships
To provide support for the associations and to gainmolecular insights
into the underlying biological basis of relationships we performed
triangulation through systematic literature mining. We identified
55,105 literature triples across the eight different cancer types and
680,375 literature triples across the MR defined putative risk factors
(Supplementary Data 9). Overlapping risk factor-cancer pairings from
our MR analysis yielded on average 49 potential causal relationships.

Fig. 3 | Hierarchical classification of associations. Potentially causal relationships
between non-binary traits and cancers were categorised into four hierarchical
levelsof statistical significance apriori; robust (PIVW-RE < 1.4 × 10−5; corresponding to
a P-value of 0.05 after Bonferroni correction formultiple testing (0.05/3,500),PWME

or PMBE < 0.05, predicted true causal direction and >1 IVs), probable (PIVW-RE < 0.05,
PWME or PMBE < 0.05, predicted true causal direction and >1 IVs), suggestive
(PIVW-RE < 0.05 or PWALD < 0.05), and non-significant (PIVW-RE ≥0.05 or PWALD≥0.05).

Weightedmedian estimates (WME)52 andmode-based estimates (MBE)53 were used
in addition to an inverse weighted random effects (IVW-RE) model, to assess the
robustness of our findings, whileMR-Egger regression assessed the extent to which
directional pleiotropy could affect causal estimates54. MR-Steiger was used to
ascertain that the exposure trait influenced theoutcomeandnotvice versa55. Binary
traits were classified associations as being supported (P <0.05) or not supported
(P >0.05). MR, Mendelian randomisation; IV, instrumental variable.
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Supplementary Data 10 stratifies the literature space size by trait
category while recognising that identified relationships with a small
literature spacecouldbe reflective of deficiencies in semanticmapping
relationships with large literature spaces supporting triangulation.
Supplementary Data 11 provides the complete list of potential media-
tors for each trait. Illustrating the use of triangulation using a large
literature space (defined herein as >50 triples) to support potentially
causal relationships, Fig. 5 highlights four notable examples (IGF-1,
LAG-3, IL-18, and PRDX1).

IGF-1, which is reported to play a role in multiple cancers, appears
to mediate its effect in part through beta-catenin and BRAF signalling,
modulating CRC and breast cancer risk29. Whilst LAG-3 inhibition is an
attractive therapeutic target in restoring T-cell function, we demon-
strate genetically elevated LAG-3 levels as being associated with
reduced CRC, endometrial and lung cancer. In all three of these can-
cers, the association appears to be at least partly mediated through IL-
10. The seemingly paradoxical relationship between LAG-3 levels and
tumourgenesis may reflect potentiation of T-cell function by serum
LAG-3 rather than cell membrane expressed LAG-330. We identify
genetically predicted IL-18 levels as being associated with an increased
risk of lung cancer. Our literature mining also supports a role for the
decoy inhibitory protein, IL-18BP as being a mediator of lung cancer
risk as well as IL-10, IL-12, IL-4 and TNF31. Finally, PRDX1, a member of
the peroxiredoxin family of antioxidant enzymes, interacts with the
androgen receptor to enhance its transactivation resulting in increased
EGFR-mediated signalling and an increased prostate cancer risk32.

Discussion
By performing a MR-PheWAS we have been able to agnostically
examine the relationship betweenmultiple traits and the risk of eight

different cancer types, restricted only by the availability of suitable
genetic instruments. Importantly, many of the traits we examined
have not previously been the subject of conventional epidemiologi-
cal studies or been assessed by MR. Comparing our work with a
recent systematic review of the previously published MR studies of
cancer, less than 10% of the MR exposures in this study had been the
subject of previous investigations4. In addition, 85% of those traits
which we found were significant had not previously been examined.
Even for risk factors that were examined in many previous analyses,
the number of cases and controls in our study has afforded greater
power to identify potential causal associations. This has allowed us to
exclude large effects on cancer risk for most exposure traits
examined.

In addition to predicting causal relationships for the well-
established lifestyle traits, which validates our approach, we impli-
cate other lifestyle factors that have been putatively associated by
observational epidemiology contributing to cancer risk. For example,
the protective effects of physical activity (Suggestive) with lung cancer
risk, oily fish (Probable) for CRC risk and fresh/dried fruit intake
(Probable) for breast cancer risk. Several of the potentially causal
relationships we identify have been the subject of studies of individual
traits and include the association between longer LTL with increased
risk of RCCand lung cancers (Robust); sex steroidhormones and riskof
breast and endometrial cancer and circulating lipids with CRC and
breast cancer. Clustering of MR predicted causal effect sizes for each
trait cancer relationship highlights the importance of risk factors
common tomany cancers but also reveal differences in their impact in
part likely to be reflective of underlying biology (Fig. 6).

Using genetic instruments for plasma proteome constituents
has allowed us to identify hitherto unexplored potential risk factors

Fig. 4 | Bubble plot of the potentially causal relationship between selected
traits and riskofdifferent cancers.Thecolumnscorrespondtodifferentcancertypes.The
coloursontheheatmapcorrespondtothestrengthofassociations(oddsratio)andtheirdirection
(redpositivelycorrelated,bluenegativelycorrelated).P-valuesrepresenttheresults fromtwo-sided

tests andareunadjusted. The sizeof eachnodecorresponds to the -log10P-value,with increasing
size indicatingasmallerP-value. In theavailableR/Shinyapp(https://software.icr.ac.uk/app/mrcan),
moving the cursor on top of each bubblewill reveal the underlyingMR statistics.
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for a number of the cancers, including: the cytokine like molecule,
FAM3D, which plays a role in host defence against inflammation
associated carcinogenesis with lung cancer33; the autophagy asso-
ciated cytokine cardiotrophin-1 with lung (Probable), endometrial
(Suggestive), prostate (Suggestive) and breast (Suggestive) cancer and
the tumour progression associated antigen CD63 with endometrial
cancer34,35. Levels of these and other plasma proteins potentially
represent biomarkers worthy of future prospective studies. Fur-
thermore, for proteomic traits with cis-IVs previous work has found
that an MR association with colocalization evidence is associated
with a higher likelihood of a particular target-indication pair being
successful in drug discovery36.

A principal assumption in MR is that variants used as IVs are
associated with the exposure trait under investigation. We therefore
used SNPs associated with exposure traits at genome-wide sig-
nificance. Furthermore, only IVs from European populations were
used to limit bias from population stratification. Our MR analysis
does, however, have limitations. Firstly, we were limited to studying
phenotypes with genetic instruments available, moreover traits such
as food intake or television watching can be highly correlated with
other exposures making deconvolution of the causal risk factor
problematic37–39. While MVMR can be used to account for the cor-
relation between traits, calculation of conditional F-statistics for
dietary traits yielded weak instruments (F < 3), which precludes their
inclusion in an MVMR model due to weak instrument bias. Secondly,
correcting for multiple testing guards against false positives espe-
cially when based on a single exposure outcome. However, the
potential for false negatives is not unsubstantial. Since we have not
adjusted for between trait correlations, our associations are inevi-
tably conservative. Thirdly, for several traits, we had limited power to
demonstrate associations of small effect. Fourthly, not unique to our

MR analysis, is the inability of our study to deconvolute time-varying
effects of genetic variants as evidenced by the relationship between
obesity and breast cancer risk40. Finally, as with all MR studies,
excluding pleiotropic IVs is challenging. To address this, we incor-
porated information from weighted median and mode-based esti-
mate methods, to classify the strength of potentially causal
associations. For groups of traits susceptible to pleiotropy (e.g.,
lipids) we also demonstrated how their incorporation into a MVMR
model can affect the relationship between these traits and outcome.
There are inevitably limitations to such modelling as exemplified by
the strong relationship between plasma FA and risk of CRCwhich has
been shown to be driven by the pleiotropic FADS locus which has a
profound effect on the metabolism of multiple FA through its gene
expression17.

A major concern articulated regarding any MR-PheWAS is the
need to provide supporting evidence from alternative sources. Herein
we have sought to address this by conducting a systematic inter-
rogation of the literature space and potentially identify intermediates
to explain relationships. Furthermore, we performed MVMR to
deconvolute relationships where multiple traits appear to influence
cancer risk. Although literature mined data can be noisy and driven by
publication bias, we have been able to provide a narrative of the
potentially causal relationships for several risk factors, which are
attractive candidates for molecular validation.

While complementary studies are required to delineate the exact
biological mechanisms underpinning associations, our analysis does
however highlight important targets for primary prevention of cancer
in the population. The limited power to robustly characterise rela-
tionships between some exposure traits and cancer in this study,
provides an impetus for larger MR studies. Finally, we recognise that
MR is not infallible and replication and triangulation of findings using
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different data sources, and if possible, benchmarking against RCTs is
highly desirable. Such efforts could identify additional factors as tar-
gets to reduce the overall burden of cancer.

Methods
Study design
Our study had four elements. Firstly, the identification of genetic
variants serving as instruments for exposure traits under investigation;
secondly, the acquisition of GWAS data for the eight cancers; thirdly,
MR analysis; fourthly, triangulation through literature mining to pro-
vide supporting evidence for potential causal relationships (Fig. 1B).

Genetic variants serving as instruments
SNPs considered genetic instruments, were identified from published
studies or MR-Base (Supplementary Data 2). For each SNP, the corre-
sponding effect estimate on a trait expressed in per standard deviation
(SD) units (assuming a per allele effect) and standard error (SE) was
obtained. Only SNPs with a minor allele frequency >0.01 and a trait
association of P-values < 5 × 10−8 in a European population GWAS were
considered as instruments. We excluded correlated SNPs at a linkage

disequilibrium threshold of r2 > 0.01, retaining SNPs with the strongest
effect. For binary traits we restricted our analyses to traits with a
medical diagnosis, excluding cancer. We removed duplicate exposure
traits based on manual curation.

Cancer GWAS summary statistics
To examine the association of each genetic instrument with cancer
risk, we used summary GWAS effect estimates from: (1) Online con-
sortia resources, for breast (BCAC; https://bcac.ccge.medschl.cam.ac.
uk/, accessed July 2022) and prostate cancer (PRACTICAL; http://
practical.icr.ac.uk/; accessed July 2022)41,42; (2) GWAS Catalog (https://
www.ebi.ac.uk/gwas/), for ovarian, CRC, endometrial and lung cancers
(accessed September 2022)43–45; (3) Investigators of published work,
for RCC and oesophageal cancer46–48. Cancer subtype summary sta-
tistics were available for lung, breast, and ovarian cancers. As the UK
Biobank was used to obtain genetic instruments for many traits
investigated, the CRC and oesophageal GWAS association statistics
were recalculated fromprimary data excluding UKBiobank samples to
avoid sample overlap bias (Table 1). Single nucleotide polymorphisms
were harmonised to ensure that the effect estimates of SNPs on
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exposure traits and cancer risk referenced the same allele (Supple-
mentary Data 12)49.

Statistical analysis
For each SNP, effects were estimated for cancer as an odds ratio (OR)
per SD unit increase in the putative risk factor (ORSD), with 95% con-
fidence intervals (CIs), using the Wald ratio50. For traits with multiple
SNPs as IVs, causal effects were estimated under an inverse variance
weighted random-effects (IVW-RE)model as the primarymeasurement
as it is robust in the presence of pleiotropic effects, provided any
heterogeneity is balanced at mean zero (Supplementary Data 3, 13-
15)51. Weighted median estimate (WME) and mode-based estimates
(MBE) were obtained to assess the robustness of findings (Supple-
mentary Data 16)52,53. Directional pleiotropy was assessed using MR-
Egger regression (Supplementary Data 17)54. The MR Steiger test was
used to infer the direction of potentially causal effect for continuous
exposure traits (Supplementary Data 18)55. For this we estimated the
PVE using Cancer Research UK lifetime risk estimates for each
tumour type (Supplementary Data 19). A leave-one-out strategy
under the IVW-RE model was employed to assess the potential
impact of outlying and pleiotropic SNPs (Supplementary Data 4)56.
This sensitivity analysis tests the effect of performing MR on the IVs
leaving one SNP out in turn. It can be used to identify when one SNP
is driving the association as, when this SNP is removed, we can expect
to see an attenuation of the MR association significance. Because
two-sample MR of a binary risk factor and a binary outcome can be
biased, we primarily considered whether there exists a significant
non-zero effect, and only report ORs for consistency57. For proteomic
traits which had an IV located cis (+/- 1Mb) of the gene target we
performed colocalisation using coloc58. This enumerates the four
possible configurations of causal variants for two traits, calculating
support for each model based on a Bayes factor. Adopting prior
probabilities of p1, p2 = 1 × 10−4 and p12 = 1 × 10−5, a posterior prob-
ability ≥0.80 was considered as supporting a specific model. For
analyses of selected traits using MVMR we used the mv_multiple
function in the TwoSampleMR package. MVMR was applied to
investigate which of these traits within the same category had inde-
pendent pleiotropic effects on a specific cancer. We restricted our
MVMR analyses to traits which had ≥2 IVs and for which we had
access to full summary statistics required for the analysis. Statistical
analyses were performed using the TwoSampleMR package v0.5.6
(https://github.com/MRCIEU/TwoSampleMR) and MendelianRando-
mization package in R (v3.4.0)49.

Estimation of study power
The power of MR to predict a causal relationship depends on the PVE
by the instrument59. We excluded instruments with a F-statistic <10
since these are considered indicative of evidence for weak instrument
bias60. We calculated conditional F-statistics for the traits using the
condFstat function in the MendelianRandomzation package61 (Sup-
plementary Data 20). We estimated the genetic correlation between
traits using Linkage-DisequilibriumAdjustedKinships (LDAK) software
(Supplementary Data 21). We derived LD matrices for the genetic
variants using the ld_matrix function in TwoSampleMR. We estimated
studypower, stipulating aP-value of 0.05 for each target a priori across
a rangeof effect sizes asperBrion et al. (SupplementaryData 2)62. Since
power estimates for binary exposure traits and binary outcomes in a
two-sample setting are unreliable, we did not estimate study power for
binary traits57.

Assignment of statistical significance
The support for a causal relationship with non-binary traits was
categorised into four hierarchical levels of statistical significance a
priori: robust (PIVW-RE < 1.4 × 10−5; corresponding to a P-value of 0.05
after Bonferroni correction for multiple testing (0.05/3,500), PWME or

PMBE < 0.05, predicted true causal direction and >1 IVs), probable
(PIVW-RE < 0.05, PWME or PMBE < 0.05, predicted true causal direction
and >1 IVs), suggestive (PIVW-RE < 0.05 or PWALD < 0.05), and non-
significant (PIVW-RE ≥0.05 or PWALD ≥0.05) (Supplementary Data 22).
Robust associations are those that remain significant after correcting
for multiple testing, the predicted direction of the effect is predicted
to be from the exposure to the cancer risk and multiple MRmethods
report a significant association. We consider these associations to
have the strongest statistical evidence, by virtue of the concordance
between variousMRmethods and statistical validation tests. Probable
associations are those that do not remain significant after correcting
for multiple testing, but the remaining conditions are the same as for
robust traits. We include this classification to account for the large
number of traits tested in this analysis, noting that when taken in
isolation these traits may be reported as having potentially causal
associations with cancer. Suggestive traits are those in which show
significance P < 0.05, but where one of the following conditions are
flouted: the direction of effect may not be predicted to be from
exposure to cancer outcome, or there is no significant consensus
between the multiple MR methods. Additionally, significant associa-
tions for which only one SNP could be used as an IV are classified as
suggestive. This was chosen to reflect the potential uncertainties that
arise when performing MR using a Wald ratio test with a single IV.
Finally, all other traits are classified as non-significant, indicating that
it is unlikely that there is any potentially causal association.While non-
significant associations can be due to low statistical power, they also
indicate that a moderate causal effect is unlikely. For binary traits we
classified associations as being supported (P < 0.05) or not supported
(P > 0.05; Supplementary Data 6, 23-25).

Support for causality
To strengthen evidence for causal relationships predicted fromtheMR
analysis we exploited the semantic predications in Semantic MEDLINE
Database (SemMedDB), which is based on all PubMed citations63.
Within SemMedDB pairs of terms connected by a predicate which are
collectively known as ‘literature triples’ (i.e. ‘subject term 1’ – pre-
dicates – ‘object term 2’). These literature triples represent semantic
relationships between biological entities derived from published lit-
erature. To interrogate SemMedDB we queried MELODI Presto and
EpiGraphDB to facilitate data mining of epidemiological relationships
for molecular and lifestyle traits64–66. For each putative risk factor-
cancer pair the set of triples were overlapped, and common terms
identified to reveal potentially causal pathways and inform aetiology.
Based on the information profile of all literature mined triples, we
considered literature spaces with >50 literature triples as being viable,
corresponding to 90% of the information content67. We com-
plemented this systematic textmining by referencing reports from the
World Cancer Research Fund/American Institute for Cancer Research,
and the International Agency for Cancer Research Global Cancer
Observatory, as well as querying specific putative relationships in
PubMed7.

Data availability
Genetic instruments can be obtained through MR-Base or from pub-
lished work (Supplementary Data 2). Summary GWAS cancer data are
available from: https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ (breast
cancer); http://practical.icr.ac.uk/blog/?page_id=8088 (prostate can-
cer); GWAS Catalogue ID: GCST004481 (ovarian cancer); GWAS Cata-
logue ID: GCST006464 (endometrial cancer); GWAS Catalogue ID:
GCST004748 (lung cancer); direct communication with consortia
(renal and esophageal cancers); - phs001415.v1.p1, phs001315.v1.p1,
phs001078.v1.p1, phs001903.v1.p1, phs001856.v1.p1 and
phs001045.v1.p1 (US based studies) and GWAS Catalog ID:
GCST90129505 (European based studies) colorectal cancer. Source
data are provided within the supplementary data of this paper.
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Code availability
Weprovide custom code used to generate the results presented in this
study at https://github.com/houlstonlab/MR-PheWAS
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