10 research outputs found

    The centrosomal deubiquitylase USP21 regulates Gli1 transcriptional activity and stability

    Get PDF
    USP21 is a centrosome-associated deubiquitylase (DUB) that has been implicated in the formation of primary cilia - crucial organelles for the regulation of the Hedgehog (Hh) signaling pathway in vertebrates. Here, we identify KCTD6 - a cullin-3 E3-ligase substrate adapter that has been previously linked to Hh signaling - as well as Gli1, the key transcription factor responsible for Hh signal amplification, as new interacting partners of USP21. We identify a cryptic structured protein interaction domain in KCTD6, which is predicted to have a similar fold to Smr domains. Importantly, we show that both depletion and overexpression of catalytically active USP21 suppress Gli1-dependent transcription. Gli proteins are negatively regulated through protein kinase A (PKA)-dependent phosphorylation. We provide evidence that USP21 recruits and stabilises Gli1 at the centrosome where it promotes its phosphorylation by PKA. By revealing an intriguing functional pairing between a spatially restricted deubiquitylase and a kinase, our study highlights the centrosome as an important hub for signal coordination

    Molecular basis of USP7 inhibition by selective small-molecule inhibitors

    Get PDF
    Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice

    The Deubiquitylase USP2 Regulates the LDLR Pathway by Counteracting the E3-Ubiquitin Ligase IDOL

    No full text
    The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation and subsequent lysosomal degradation of the LDLR. Consequently, inhibition of IDOL-mediated degradation of the LDLR represents a potential strategy to increase hepatic LDL-cholesterol clearance. To establish whether deubiquitylases counteract IDOL-mediated ubiquitylation and degradation of the LDLR. Using a genetic screening approach, we identify the ubiquitin-specific protease 2 (USP2) as a post-transcriptional regulator of IDOL-mediated LDLR degradation. We demonstrate that both USP2 isoforms, USP2-69 and USP2-45, interact with IDOL and promote its deubiquitylation. IDOL deubiquitylation requires USP2 enzymatic activity and leads to a marked stabilization of IDOL protein. Paradoxically, this also markedly attenuates IDOL-mediated degradation of the LDLR and the ability of IDOL to limit LDL uptake into cells. Conversely, loss of USP2 reduces LDLR protein in an IDOL-dependent manner and limits LDL uptake. We identify a tri-partite complex encompassing IDOL, USP2, and LDLR and demonstrate that in this context USP2 promotes deubiquitylation of the LDLR and prevents its degradation. Our findings identify USP2 as a novel regulator of lipoprotein clearance owing to its ability to control ubiquitylation-dependent degradation of the LDLR by IDO

    Distance between homologous chromosomes results from chromosome positioning constraints

    No full text
    International audienceThe organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis

    The deubiquitylase USP9X controls ribosomal stalling

    No full text
    AbstractWhen a ribosome stalls during translation, it runs the risk of collision with a trailing ribosome. Such an encounter leads to the formation of a stable di-ribosome complex, which needs to be resolved by a dedicated machinery. The initial stalling and the subsequent resolution of di-ribosomal complexes requires activity of Makorin and ZNF598 ubiquitin E3 ligases respectively, through ubiquitylation of the eS10 and uS10 sub-units of the ribosome. It is common for the stability of RING E3 ligases to be regulated by an interacting deubiquitylase (DUB), which often opposes auto-ubiquitylation of the E3. Here, we show that the DUB USP9X directly interacts with ZNF598 and regulates its abundance through the control of protein stability in human cells. We have developed a highly specific small molecule inhibitor of USP9X. Proteomics analysis, following inhibitor treatment of HCT116 cells, confirms previous reports linking USP9X with centrosome associated protein stability and reveals loss of ZNF598 and Makorin 2. In the absence of USP9X or following chemical inhibition of its catalytic activity, steady state levels of Makorins and ZNF598 are diminished and the ribosomal quality control pathway is impaired.</jats:p

    USP28 deletion and small molecule inhibition destabilises c-Myc and elicits regression of squamous cell lung carcinoma

    No full text
    AbstractLung squamous cell carcinoma (LSCC) is a considerable global health burden, with an incidence of over 600,000 cases per year. Treatment options are limited, and patient 5-year survival rate is less than 5%. The ubiquitin specific protease 28 (USP28) has been implicated in tumorigenesis through its stabilization of the oncoprotein c-MYC. Here, we show that genetic inactivation of Usp28 induced regression of established murine LSCC lung tumors. We developed a small molecule that inhibits USP28 activity in the low nanomole range. While displaying cross-reactivity against the closest homologue USP25, this inhibitor showed a high degree of selectivity over other deubiquitinases. USP28 inhibitor treatment resulted in a dramatic decrease in c-Myc proteins levels and consequently induced substantial regression of autochthonous murine LSCC tumors and human LSCC xenografts, thereby phenocopying the effect observed by genetic deletion. Thus, USP28 may represent a promising therapeutic target for the treatment of squamous cell lung carcinoma.</jats:p

    USP28 deletion and small-molecule inhibition destabilizes c-MYC and elicits regression of squamous cell lung carcinoma

    No full text
    Lung squamous cell carcinoma (LSCC) is a considerable global health burden, with an incidence of over 600,000 cases per year. Treatment options are limited, and patient 5-year survival rate is less than 5%. The ubiquitin specific protease 28 (USP28) has been implicated in tumorigenesis through its stabilization of the oncoproteins c-MYC, c-JUN and Dp63. Here, we show that genetic inactivation of &lt;i&gt;Usp28&lt;/i&gt; induced regression of established murine LSCC lung tumours. We developed a small molecule that inhibits USP28 activity in the low nanomole range. While displaying cross-reactivity against the closest homologue USP25, this inhibitor showed a high degree of selectivity over other deubiquitinases. USP28 inhibitor treatment resulted in a dramatic decrease in c-MYC, c-JUN and Dp63 proteins levels and consequently induced substantial regression of autochthonous murine LSCC tumors and human LSCC xenografts, thereby phenocopying the effect observed by genetic deletion. Thus, USP28 may represent a promising therapeutic target for the treatment of squamous cell lung carcinoma

    Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions

    No full text
    A localization atlas is provided for 66 of 90 mammalian GFP-tagged deubiquitinases (DUBs). USP21 is the only DUB in the panel that localizes to both microtubules and the centrosome. Functional data suggest a key role for USP21 in the choreography of microtubule reorganization
    corecore