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Abstract 
 When a ribosome stalls during translation, it runs the risk of collision with a trailing 
ribosome. Such an encounter leads to the formation of a stable di-ribosome complex, which 
needs to be resolved by a dedicated machinery. The initial stalling and the subsequent 
resolution of di-ribosomal complexes requires activity of Makorin and ZNF598 ubiquitin E3 
ligases respectively, through ubiquitylation of the eS10 and uS10 sub-units of the ribosome. 
It is common for the stability of RING E3 ligases to be regulated by an interacting 
deubiquitylase (DUB), which often opposes auto-ubiquitylation of the E3. Here, we show that 
the DUB USP9X directly interacts with ZNF598 and regulates its abundance through the 
control of protein stability in human cells. We have developed a highly specific small molecule 
inhibitor of USP9X. Proteomics analysis, following inhibitor treatment of HCT116 cells, 
confirms previous reports linking USP9X with centrosome associated protein stability and 
reveals loss of ZNF598 and Makorin 2. In the absence of USP9X or following chemical 
inhibition of its catalytic activity, steady state levels of Makorins and ZNF598 are diminished 
and the ribosomal quality control pathway is impaired. 

Introduction 

 Prompt sensing and resolution of aberrant protein translation is essential for the 
maintenance of protein homeostasis. Several circumstances can give rise to stalled ribosomes, 
such as insufficiency of a cognate acylated-tRNA, defective mRNA or faulty ribosomes [1, 2]. 
The most common cause of ribosomal stalling is thought to be the translation of poly(A), 
when a nascent mRNA is inappropriately polyadenylated within its coding region to generate 
a “non-stop” mRNA transcript lacking a stop codon [3, 4]. If a ribosome stalls during 
translation it risks being rear-ended by a trailing ribosome. This collision generates a stable 
di-ribosome complex with a defined structure, which is resolved by the engagement of a 
dedicated machinery [5, 6]. In such cases the E3-ligase ZNF598 ubiquitylates 40S complexes 
at specific sites on eS10 and uS10 sub-units at the di-ribosome interface [5, 7-9]. This 
prevents further translation and initiates quality control processes (e.g. degradation of the 
associated mRNA) and ribosomal recycling pathways through partially understood 
mechanisms [10]. ZNF598 is a human RING domain protein that shares homology with the 
yeast protein Hel2, the deletion of which promotes read-through of polybasic sequences [8, 
11]. A recent report has provided evidence that the E3-ligases Makorin 1 (MKRN1) and 
potentially Makorin 2 (MKRN2) may complement the activity of ZNF598 in the ribosomal 
quality control pathway, by promoting the initial stalling of the leading ribosome as it 
encounters a polyA tract [12].  
 The function of E3-ligases, can be opposed by ~100 deubiquitylase (DUB) enzymes 
drawn from seven families [13]. RING E3s show a propensity to auto-ubiquitylate, leading to 
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their destabilisation, which can be rescued by the activity of interacting DUBs. The best 
known such example is provided by the association between USP7 and MDM2, which has 
made USP7 a prominent drug target, as a means to regulate levels of p53 [14]. Recent work, 
focused on this enzyme, has established proof of principle that selective small molecule 
inhibition amongst the USP family can be achieved [15-18]. USP9X is one of the most 
abundant members of the USP family and has been linked with many processes, including 
centrosome function, chromosome alignment during mitosis, EGF receptor degradation, 
chemo-sensitisation and circadian rhythms [19-23].  Loss of function mutations in females 
lead to congenital malformations and intellectual disability [24]. 
 In this study we identify the E3 ligase ZNF598 as a USP9X binding partner and show 
that USP9X governs the stability of ZNF598. The loss or inhibition of USP9X leads to a 
substantive reduction in steady state levels of ZNF598 and Makorins that disables an 
effective response to the presence of stalled ribosomes.  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Results and discussion: 

 In a large scale proteomic study of the ribosome interactome, USP9X was the only 
DUB family member to be identified [25].  Furthermore, USP9X is also apparent within the set 
of ZNF598 interacting proteins, previously identified in a label free proteomic study [7]. We 
sought to confirm this interaction by immuno-precipitating FLAG-tagged ZNF598 transiently 
expressed in HEK293T cells (Figure 1). USP9X is clearly present in the IP containing ZNF598-
FLAG and is absent from control lanes. 
  

{Figure1 about here} 

We next compared the engineered USP9X-/0 HCT116 colon cancer cells that have been 
described previously [19] with wild type cells of the same origin. As expected, the USP9X-/0 
cells show reduced levels of previously identified peri-centrosomal substrates CEP55, CEP131 
and PCM1 [21, 22] (Figure 2A). ZNF598 levels are also greatly diminished in these cells 
(Figure 2A and Supplementary Figure 1). Two lines of argument suggest that this is not an 
effect on transcription, (i) endogenous ZNF598 mRNA levels are similar between the two cell 
lines (Figure 2B) and (ii) levels of exogenous HA-ZNF598 expression that is driven by a non-
native promoter are also diminished in transfected cells (Figure 2C). We next treated these 
cells with cycloheximide and monitored the decay of the expressed HA-ZNF598. In wild type 
cells, levels of HA-ZNF598 remained stable over the 6 hours of incubation, whilst in the 
USP9X-/0 cells the levels significantly decline to about ~60% in the same period (Figure 2D). 
The most parsimonious explanation of these combined results is that USP9X interacts with 
ZNF598 and regulates its steady state levels through the control of its stability. 

{Figure 2 about here} 

 To demonstrate that this requires the catalytic activity of USP9X we took advantage of 
a highly selective small molecule inhibitor FT709 (Figure 3A, chemical structure, 3B-3H). We 
identified USP9X inhibitors using a ubiquitin-TAMRA fluorescence polarization HTS assay, 
screening the inhibitory potential of a diverse collection of approximately 140,000 
compounds available at FORMA Therapeutics. Primary hits were further validated for direct 
USP9X binding by biophysical techniques such as surface plasmon resonance (SPR). 
Optimization of hits with respect to activity and physicochemical properties resulted in a 
series of compounds that included FT709. 
 FT709 is potent in a biochemical assay with an IC50 of 82 nM (Fig 3B). Modulation of 
CEP55 expression in BxPC3 pancreatic cancer cells showed an IC50 of 131 nM (Fig 3C). The 
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selectivity of FT709 was tested across more than 20 DUBs in a biochemical assay (Table 1) 
and was inactive across the panel (IC50>25 µM). FT709 shows vastly improved specificity 
over the compound WP1130, which has been previously used as a USP9X inhibitor tool 
compound [26, 27]. FT709 competes with an active site probe (HA-UbC2Br) with an IC50 of 
~0.5µM when applied to MCF7 breast cancer cell lysates and ~5µM to intact MCF7 cells 
(Figure 3D-F and Supplementary Figure 2). Immunoprecipitation from cell lysates labelled 
with the active site probe HA-UbC2Br, revealed that USP9X is uniquely sensitive to this 
compound, within a set of 23 DUBs quantified by mass spectrometry (Figure 3G,H and 
Supplementary Figure 2).  
 Acute inhibition with FT709, recapitulates gene deletion of USP9X in HCT116 cells, 
leading to reduction of ZNF598 (Figure 4A). We conducted a wider survey of protein 
expression following USP9X inhibition through quantitative mass spectrometry (Figure 4B, 
Supplementary Table 1). Amongst a small number of proteins that decrease by more than 
two-fold following inhibitor treatment, known USP9X substrates are prominent. These include 
the (peri)-centrosomal proteins PCM1, CEP55 and CEP131 [21, 22] and the mitotic kinase, 
TTK, also known as Monopolar spindle 1 (Mps1) kinase (Figure 4B,C) [28].  ZNF598 is also 
found within this cohort, in alignment with our Western blot analysis (Figure 4A,B). 
Intriguingly a second RING E3-ligase MKRN2, that has been linked to ribosome stalling, is is 
equally identified as a clear outlier (Figure 4B, C) [12]. Accordingly MKRN2 is also reduced in 
USP9X-/0 cells (Figure 4D). Note that these are the only RING E3 ligases, contained within the 
proteomic dataset (>6000 proteins), which show this magnitude of response to USP9X 
inhibition (Supplementary Table 1).  

[Figures 3 and 4 about here] 

 We next asked if the effects of USP9X ablation upon ZNF598 and MKRN2 could be 
extended to another cell type, HEK293 cells. We used a set of 4 individual gRNAs designed to 
target USP9X, which were packaged in an expression plasmid that also codes for Cas9 
(px459-pSpCas9(BB)-2A-Puro-v2). Plasmids were transfected either individually, or as a pool, 
and cell populations were harvested after 168 hours of selection with puromycin. The pooled 
transfection effectively ablated USP9X protein expression across the cell population, leading 
to a correspondingly stark reduction in ZNF598 and MKRN2 levels. ZNF598 loss, achieved 
through the same transient CRISPR/Cas9 based approach or in a stable knock-out cell line 
showed no reciprocal effect on USP9X levels (Figure 5A).  
 The HEK293 cells used in this study (HEK293-Flp-IN TREX GFP-P2A-(KAAA)21 -P2A-RFP) 
have been engineered to express a reporter system for terminal ribosomal stalling [8]. The 
reporter cassette contains GFP (N-terminal) and RFP (C-terminal) separated by a FLAG-
tagged stalling reporter (SR) incorporating a polyA stretch of twenty-one codons (KAAA)21 
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(Figure 5B). This is flanked by viral P2A sequences, at which ribosomes skip formation of a 
peptide bond, without interrupting translation elongation. Consequently, unimpaired 
translation generates 3 proteins (GFP, FLAG-SR, RFP) in equal amounts. Stalling at the FLAG-
SR aborts translation prior to RFP synthesis, leading to a sub-stoichiometric RFP:GFP ratio. 
Failure to effectively respond to stalled ribosomes allows eventual read-through and a 
consequent rise in the RFP:GFP ratio that can be assessed by fluorescence activated cell 
sorting (Figure 5B, schematic diagram)[8]. As reported previously, an isogenic reporter cell 
line, in which the ZNF598 gene has been deleted, shows an enhanced RFP:GFP ratio when 
compared to parental cells consistent with read-through, due to failure of the ribosomal 
stalling response [8]. Using the pooled USP9X gRNA cells, that show highly reduced levels of 
both USP9X and ZNF598, we could recapitulate this phenomenon. We also analysed 3 of the 
cell populations treated with individual gRNAs as represented in Fig 5A that show varying 
effectiveness for USP9X depletion. Guide 1 serves as a control because it was ineffective in 
editing the USP9X gene and accordingly shows no change in the RFP:GFP ratio. Guide 4 
generates two distinct populations with about 50% showing an enhanced RFP:GFP ratio, 
whilst Guide 7 shows a uniform enhancement of this ratio reminiscent of the effect of 
ZNF598 deletion and comparable to the pooled gRNA sample (Figure 5C). Importantly, we 
were able to recapitulate polyA read through with FT709, implicating USP9X enzymatic 
activity, and providing a pharmaceutical approach to counteract ribosomal stalling (Figure 
5D). In this condition, effects on ZNF598 levels were less dramatic in this cell line, but were 
accompanied by losses of both MKRN1 and MKRN2. We propose that USP9X inhibition may 
promote read through by a combined effect on each of these 3 RING E3 ligases linked to the 
ribosomal quality control pathway (Figure 5E). 

{Figure 5 about here} 

Conclusions 

 USP9X is for the most part a non-essential DUB family member, that is nevertheless 
expressed at relatively high levels [29, 30]. Multiple biological functions have been ascribed to 
USP9X that include roles in apoptosis, Wnt signaling and mitotic check-point control [31, 32] 
[33]. Our proteomics data most strongly support previously established links to centrosome 
biology  [21, 22, 34]. Here, we reveal a new biological role for USP9X in the resolution of 
stalled ribosomes, which is supported by unbiased proteomics. We propose that this is 
principally related to its governance of ZNF598 stability, but could also extend to Makorin 
family members [12]. It is possible that USP9X could also play a more direct role in the 
deubiquitylation of ribosomal sub-units themselves during stalling resolution. However this is 
difficult to unravel from effects upon their ubiquitin conjugation by the E3 ligases described 
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here. Moreover, other DUBs (USP21, OTUD3) have recently been linked with this function 
[35]. The non-uniform dynamics of ribosomal processing, duration and resolution of stalling 
may have important implications for protein folding, mRNA turnover and for the integrated 
stress response (ISR) [6, 36]. Recent studies have also shown that ribosomal collisions can 
result in +1 frame-shifting when the no-go RNA decay pathway is compromised [37]. Our 
introduction of a highly specific USP9X tool compound inhibitor will enable further enquiry 
into pathways previously linked to USP9X, which should now include global profiling of 
protein translation. 
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Methods  

Chemical compound 
FT709 used in this study was prepared by the procedures described in detail previously  [38]. 

Cell culture 

HEK293T cells were cultured in DMEM with GlutaMAX+ 10% tetracycline-free FBS, HEK293 
Flp-IN 293 Trex K(AAA)21 wt or ZNF598ko were cultured in DMEM with GlutaMAX+ 10% 
tetracycline-free FBS 15  μg/ml blasticidin, 100  μg/ml hygromycin. To induce reporter 
expression 1µgml-1 Doxycycline was added 24 hr before harvesting.  HCT116 and HCT116 
USP9x-/0 were cultured in McCoys media + 10% FBS.  MCF7 cells were cultured in DMEM 
medium supplemented with 10% FCS, 1% penicillin/streptomycin and 1% glutamine at 37oC 
and 5% CO2. Cells were routinely checked for mycoplasma. For cycloheximide assay, cells 
were treated for the indicated times with 100µg/ml cycloheximide and harvested 24 hr post 
transfection. 

Transfection 
For transient transfection, 2µg total DNA (per well of a 6 well plate) was transfected using 
Genejuice (Novagen) according to manufacturer’s instructions.  Cells were harvested 24-168 
hr post transfection. 

Lysis and Western Blot analysis 
Cultured cells were lysed for 10 min at 4˚C in RIPA buffer (10 mM Tris–HCl pH 7.5, 150 mM 
NaCl, 1% Triton X-100, 0.1% SDS, 1% sodium deoxycholate) supplemented with mammalian 
protease inhibitor cocktail (SIGMA). Proteins were resolved using SDS–PAGE (Invitrogen 
NuPage gel 4–12%), transferred to nitrocellulose membrane, blocked in 5% fat-free milk or 
5% bovine serum albumin in TBS supplemented with Tween-20, and probed with primary 
antibodies overnight. Visualisation and quantification of Western blots were performed using 
IRdye 800CW and 680LT coupled secondary antibodies and an Odyssey infrared scanner (LI-
COR Biosciences, Lincoln, NE). 

Co-IP 
Cells were lysed in TNTE buffer (10mM Tris-Cl pH 7.5, 150mM NaCl 0.3% Triton-X100, 5mM 
EDTA) supplemented with mammalian protease inhibitor cocktail (Sigma).  750µg total protein 
was then incubated with 20µg prewashed FLAG affinity gel (Sigma) for 2h at 4˚C, washed 
with TBS buffer (10mM Tris-Cl pH 7.5, 100mM NaCl) and eluted in sample buffer (62.5mM 
Tris-Cl pH 6.8, 3% SDS, 10% glycerol, 3.2% ß-mercaptoethanol).  Immunoprecipitates were 
then analysed by western blot as above. 

RNA isolation and Reverse Transcription qPCR 
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Total RNA was isolated from HCT116, HCT116 USP9x-/0, Flp-IN 293 Trex K(AAA)21 wt and Flp-
IN 293 Trex K(AAA)21 ZNF598 KO using the Qiagen RNA extraction kit (74106). cDNA was 
generated using 1 µg RNA and the Thermo Scientific RevertAir H Minus reverse transcriptase 
(Fisher Scientific UK: 11541515) supplemented with RNasin (Promega:N251S), PCR 
nucleotide mix (Promega: U144B) and oligo (dT) 15 Primer (Promega: C1101). qPCRs were 
performed in triplicate using primers against ZNF598, USP9x, USP9y, actin (see Table 2 for 
sequences) and iTaq Mastermix (BioRad: 172-5171) in a BioRad CFX Connect real time 
system. The mean Ct values were normalised to actin (ΔCt=Ct target - Ct actin), raised to the 
exponent of 2-ΔCt and normalised to the respective wild-type control cell line to generate 2-

ΔΔCt.  

FACS 
Primers as detailed in Table 2 were cloned into px459-pSpCas9(BB)-2A-Puro-v2 vector at the  

BbsI site.  These were transfected into Flp-IN 293 Trex K(AAA)21 wt and ZNF598 ko using 

Genejuice (Novagen).  24 hours post-transfection, media was changed and 1µg/ml Puromycin 

included.  Cells were then cultured for 7 days before harvesting for western blot and FACS 

analysis.  For FACS, cells were trypsinised, counted, resuspended in 10% tetracycline free FBS 

in PBS and analysed on a FACS Aria III in conjunction with FlowJo software. 

DUB biochemical assay 
The assay was performed in a final volume of 6 µL in assay buffer containing 20 mM Tris 

buffer pH8, 0.03% bovine γ  globulin, 0.01% Triton X-100 and 1 mM glutathione. Nanoliter 

quantities of 10-point, 3-fold serial dilutions in DMSO were pre-dispensed into 1536 assay 

plates for a final top concentration between 25 to 33.3mM and subsequent half-log dilutions. 

2X DUB (0.025nM final concentration) was added and pre-incubated for 30 minutes at room 

temperature. 2X Ub-Rhodamine (25 nM final concentration) was added to initiate the 

reaction.  Fluorescence readings (Ex: 485 nm, Em: 535 nm) were acquired over 12 minutes 

(Envision reader).  The slope of the data from each point was used to determine IC50. 

For all assays, data were reported as percent inhibition compared with control wells. IC50 

values were determined by curve fitting of the standard 4 parameter logistic fitting algorithm 

included in the Activity Base software package: IDBS XE Designer Model205.  Data were fitted 

using the Levenburg Marquardt algorithm. Results presented are based on 3 independent 

experiments performed in quadruplicates. 

MSD assay for CEP55 
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BxPC-3 cells were seeded in 96-well plates and exposed to FT709 (20 µM top concentration, 

1:2 serial dilutions) for 6 hours. Cell lysates were prepared in RIPA buffer and stored at -80°C 

until analysis. Samples were analysed by an MSD Elisa assay (Pacific Biolabs) using a CEP55 

antibody (Novux, 1:500 dilution in PBS) captured overnight at 4°C, 30µL lysates per well, 30 

µL of CEP55 Ab (CST#81693) diluted 1:2000 in 1% blocker A/PBS and 30 uL per well of a 

1:4000 diluted Goat anti-Rabbit Sulfo-tag, 1% Blocker A/PBS. Plates were read on a MSD 

Sector Imager 2400. Results were transformed as % DMSO controls and curves fitted using a 

non-linear regression to determine the IC50. Results presented are based on duplicate values. 

DUB profiling assays using Ub-based active site directed probes 

Molecular probes based on the ubiquitin scaffold were generated and used essentially as 

described [39, 40]. In brief, HA-tagged Ubiquitin bromoethyl (HA-UbC2Br) was synthesised 

by expressing the fusion protein HA-Ub75-Intein-Chitin binding domain in E.Coli BL21 strains 

[41]. Bacterial lysates were prepared and the fusion protein purified over a chitin binding 

column (NEB labs, UK). HA-Ub75-thioester was obtained by incubating the column material 

with mercaptosulfonate sodium salt (MESNa) overnight at 37°C. HA-Ub75-thioester was 

concentrated to a concentration of ~1mg/ml using 3,000 MW filters (Sartorius) and then 

desalted against PBS using a PD10 column (GE Healthcare). 500 μL of 1-2mg/mL of HA-Ub75-

thiolester was incubated with 0.2mmol of bromo-ethylamine at pH 8-9 for 20 minutes at 

room temperature, followed by a desalting step against phosphate buffer pH 8 as described 

above. Ub probe material was concentrated to ~1mg/ml, using 3,000 MW filters (Sartorius), 

and kept as aliquots at -80°C until use. 

DUB competition assays with cell extracts and with cells (in situ) 

Crude MCF7 cell extracts were prepared as described previously using glass-bead lysis in 

50mM Tris pH 7.4, 5mM MgCl2, 0.5mM EDTA, 250mM sucrose, 1mM DTT [40, 41]. For 

experiments with crude cell extracts, 50μg of MCF7 cell lysate was incubated with different 

concentrations of FT709 for one hour at 37°C, followed by addition of 1μg HA-UbC2Br and 

incubation for 5 minutes at 37°C. Incubation with Ub-probe was optimised to minimise 

replacement of non-covalent inhibitor FT709 by the covalent probe. Samples were then 

subsequently boiled in reducing SDS-sample buffer, separated by SDS-PAGE and analysed by 

Western Blotting using anti-HA (1:2000), anti-USP9x (CST, 1:1000) or beta Actin (1:2000) 

antibodies. 5x106 intact MCF7 cells were incubated with different concentrations of inhibitors 
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in cultured medium for 4 hours at 37°C, followed by glass-bead lysis, labelling with HA-

UbC2Br probe and analysis by SDS-PAGE and Western blotting as described above.  

Mass spectrometry based DUB inhibitor profiling assays 

Ub-probe pulldown experiments in presence of different concentrations of the inhibitors 

FT709 were performed essentially as described [39, 40] with some modifications. In brief, 

immuno-precipitated material from 500μg-1mg of MCF-7 cell crude extract was subjected to 

in-solution trypsin digestion and desalted using C18 SepPak cartidges (Waters) based on the 

manufacturer’s instructions. Digested samples were analyzed by nano-UPLC-MS/MS using a 

Dionex Ultimate 3000 nano UPLC with EASY spray column (75μm x 500 mm, 2μm particle 

size, Thermo Scientific) with a 60 minute gradient of 0.1% formic acid in 5% DMSO to 0.1% 

formic acid to 35% acetonitrile in 5% DMSO at a flow rate of ~250nl/min (~600bar/40°C 

column temperature). MS data was acquired with an Orbitrap Q Exactive High Field (HF) 

instrument in which survey scans were acquired at a resolution of 60.000 @ 400m/z and the 

20 most abundant precursors were selected for CID fragmentation. From raw MS files, peak 

list files were generated with MSConvert (Proteowizard V3.0.5211) using the 200 most 

abundant peaks/spectrum. The Mascot (V2.3, Matrix Science) search engine was used for 

protein identification at a false discovery rate of 1%, mass deviation of 10ppm for MS1 and 

0.06 Da (Q Exactive HF) for MS2 spectra, cys carbamidylation as fixed modification, met 

oxidation and Gln deamidation as variable modification. Searches were performed against the 

UniProtKB human sequence data base (retrieved 15.10.2014). Label-free quantitation was 

performed using MaxQuant Software (version 1.5.3.8), and data further analysed using 

GraphPad Prism software (v7) and Microsoft Excel. Statistical test-s ANOVA (multiple 

comparison; Original FRD method of Benjamini and Hochberg) was performed using 

GraphPad Prism software [42]. 

SILAC based proteome analysis of FT709-treated HCT116 cells 
HCT116 cells were grown in SILAC DMEM supplemented with 10 % dialysed FBS (Dundee Cell 

Products) at 37°C and 5 % CO2. To generate light, medium and heavy stable isotope-labelled 

cells, arginine- and lysine-free DMEM medium was supplemented with 200 mg/L L-proline 

and either L-lysine (Lys0) together with L-arginine (Arg0) (“Light”), L-lysine-2H4 (Lys4) with L-

arginine-U-13C6 (Arg6) (“Medium”) or L-lysine-U-13C6-15N2 (Lys8) with L-arginine-U-13C6-15N4 
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(Arg10) (“Heavy”) at final concentrations of 84 mg/L for the arginine and 146 mg/L for the 

lysine until fully metabolically labelled. Cells were treated with DMSO or 10 µM FT709 for 4 

hours or 24 hours, prior to lysis in 50 mM Tris pH 6.8, 2 % SDS, 10 % glycerol. Relative 

protein concentrations of the lysates were determined using a BCA-assay (Thermo-Fisher) 

and “Light”, “Medium” and “Heavy” labelled lysates were combined in a 1:1:1 ratio. 

Deep proteome workflow 
Protein extracts (1.2 to 1.5 mg) containing SDS were reduced with 5 mM dithiothreitol, 

alkylated with 20 mM iodoacetamide and then subjected to methanol/chloroform extraction. 

Protein pellets were resuspended in 6 M urea by vortexing and sonication, then diluted to a 

final concentration of 1 M prior to in-solution digestion with 0.2 µg/µl  trypsin (Sequencing 

grade (Promega) overnight at 37°C. Off-line high-pH reverse-phase prefractionation was 

performed on the digested material   as previously described [43], with the exception that 

eluted peptides were concatenated down to 10 fractions. Peptide fractions were analysed in 

technical replicates by nano-UPLC-MS/MS using a Dionex Ultimate 3000 nano UPLC with 

EASY spray column (75 μm x 500 mm, 2 μm particle size, Thermo Scientific) with a 60 minute 

gradient of 2% acetonitrile, 0.1% formic acid in 5% DMSO to 35% acetonitrile, 0.1% formic 

acid in 5% DMSO at a flow rate of ~250nl/min. MS data was acquired with an Orbitrap Q 

Exactive HF instrument in which survey scans were acquired at a resolution of 60.000 at 

200m/z and the 20 most abundant precursors were selected for HCD fragmentation with a 

normalised collision energy of 28.  

Data analysis 
All raw MS files from the biological replicates of the SILAC-proteome experiments were 

processed with the MaxQuant software suite; version 1.5.3.8 using the Uniprot database 

(uniprotHumanUP000005640.fasta-retrieved in July 2015) and the default settings [44]. The 

minimum required peptide length was set to 6 amino acids and two missed cleavages were 

allowed. Cysteine carbamidomethylation was set as a fixed modification, whereas oxidation 

and acetyl N terminal were considered as variable modifications.  ProteinGroup text files were 

further processed using Excel (see Supplementary Table 1) and the log2 of the normalised 

ratios were plotted using JMP software (version 13.0.0).  
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Table 1 

DUB IC50	
(µM)

USP1 >25.8

USP2 >26.7

USP4 >33.3

USP5 >33.3

USP7 >25.8

USP8 >25

USP9x 0.082

USP10 >33.3

USP11 >33.3

USP12 >33.3

USP13 >26.7

USP15 >26.7

USP18 >27.9

USP22 >26.7

USP24 >26.7

USP25 >26.7

USP28 >26.7

USP33 >26.7

USP36 >26.7

USP37 >33.3

USP47 >33.3
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Table 2 - List of reagents used in this study 

Cells
Flp-IN 293 Trex K(AAA)21 wt Juszkiewicz and Hegde - 2017
Flp-IN 293 Trex K(AAA)21 ZNF598 KO Juszkiewicz and Hegde - 2018
HCT116 ATCC CCL-247 
HCT116 USP9x -/0 Neo+ Harris, Mims, Bunz 2012
HEK293T Gift of Maarit Suomalainen

 BxPC3 ATCC CRL-1687

MCF 7 ATCC HTB-22

px459-pSpCas9(BB)-2A-Puro-v2 Addgene #62988
pcDNA3.1-ZNF598-TEV-3xFLAG_Addgene Juszkiewicz and Hegde - 2017
pCMV-HA-ZNF598 This study

Antibodies
Actin Sigma A2266
Actin Abcam Ab6276
Anti ribosomal protein S10 antibody 
[EPR8545]

Abcam ab151550

Anti-HA High Affinity Roche 11867423001

c-Myc (D84C12) XP Cell Signaling Technology #5606

CEP131 (AZI1) Abcam ab99379

CEP55 (D1L4H) Cell Signalling Technology #81693
CEP55 Novus 
GFP Custom made
HA Roche 12CA5
HGS (HRS) Everest Biotech EB07211
MKRN2 Abcam ab72055
Myc Clone 4A6 Millipore 05-724

p53-DO1 Santa Cruz sc-126

PCM-1 (G2000) Cell Signaling Technology #5213

TTK Cell Signaling (NEB) Cell Signaling Technology #5469

Anti ribosomal protein S10 [EPR8545] abcam ab151550
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USP9X Bethyl A301-350A
ZNF598 Abcam  ab80458
ZNF598 antibody [N1N3] GeneTex GTX119245
NBP1-84659 ZNF598 Antibody Novus Bio techne NBP1-84659

Primers Forward sequence

AC_USP9y-q_F ATG AGC CCT CTC CAT CAG

AC_USP9y-q_R  GAC CTT AGT GCA TAG TCA TAA AG 

AC_USP9x-q_F ACA TGA GTC GCC TCC ACC TG

AC_USP9x-q_R GCC TGG GTG CAC AGT CTT G

AC_ZNF598_qPCR2_F GCT CAT CCA GTC CAT CAG GG

AC_ZNF598_qPCR2_R GCA GGA CCA GCA GCT CAT TA

ACTB_Fnew9-06 CAC CTT CTA CAA TGA GCT GCG TGT G 

1611_ACTB Rnew9-06 ATA GCA CAG CCT GGA TAG CAA CGT AC

CH-gUSP9#1 CACC  GATCAACAGGCCTCGATGGG
CH-gUSP9#2 CACC G ATGCTTCACTTTTAACATCA
CH-gUSP9#4 CACC G ATTCTTGCCATTGAAGGCAC
CH-gUSP9#7 CACC G ATTCATGTAACAAGTAGCAC
CH-gZNF598#1 CACC G TAGAGCAGCGGTAGCACACC
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Legends 

Figure 1: USP9X co-immunoprecipitates with Flag-tagged ZNF598. HEK293T cells were transfected 

with ZNF598-Flag or Flag alone (pCMV-Tag2B) and cell lysates were subjected to immunoprecipitation 

(IP) with Flag-antibody coupled agarose beads. IPs were probed alongside 5% of the input as 

indicated. Arrowhead indicates ZNF598-Flag; asterisk indicates a  non-specific band.  

Figure 2: ZNF598 is destabilised in USP9X KO cells.  A - HCT116 or HCT116 USP9x-/0 lysates were 

analysed by immunoblot with the indicated antibodies. B - qRT-PCR reactions for ZNF598, USP9X and 

USP9Y (normalised to Actin) were performed with cDNA derived from the indicated cell lines. The 

mean of three independent biological replicates is shown and error bars indicate the standard 

deviation. C - HCT116 or HCT116 USP9x-/0 cells were transfected with 0, 0.2, 0.4, 0.8 or 1.6μg HA-

ZNF598 and 0.2μg GFP as a transfection control, and lysates analysed by immunoblot with the 

indicated antibodies. Graph shows HA-ZNF598 relative to co-transfected GFP. D - HCT116 or HCT116 

USP9x-/0 cells were transfected with 0.2μg HA ZNF598 and treated for the indicated times with 

100μg/ml  Cycloheximide (CHX). Lysates (8µg  for HCT116 and 20µg HCT116-USP9x-/0) were probed 

with the indicated antibodies. Graph shows the average of 4 independent experiments, error bars 

represent the standard deviation. TPS: Total Protein Stain. 

Figure 3: Characterisation of a highly selective USP9X inhibitor. A - Chemical structure of FT709. B 

In vitro potency of FT709 against USP9X. C BXPC3 cell-based potency of FT709 for reduction of  

CEP55. D, E, F - Cell lysates (D) or intact MCF7 cells (E) were incubated with FT709 (30 minutes at 25°C 

for cell extracts, 3 hours at 37°C for cells) at the indicated concentrations. Cells were lysed, and 

extracts incubated with 0.1 µg HA–UbC2Br probe for 5 min at 37°C, followed by SDS-PAGE analysis. 

Samples were immunoblotted with USP9X and HA antibodies as indicated. Arrow indicates HA-probe 

labelled band corresponding to the USP9X~Ub probe adduct. Modification of USP9X with a ubiquitin 

probe (USP9X~Ub) was lost with increasing concentrations of inhibitor. F - quantitation of Western 

blots G, H - HA-based immunoprecipitation of HA-UbC2Br probe labelled DUBs from cell lysates 
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incubated first with DMSO, 1 or 10 µM  FT709 for one hour at 37°C. Immuno-precipitated proteins 

were eluted and either analysed side by side with total lysate samples by immunoblotting (TL; Total 

lysate; EL:  Eluate) or were subjected to mass spectrometry-based quantification in three technical 

replicates. Differences in DUB-probe binding were quantified for 23 identified DUBs and normalised 

relative to DMSO control. FT709 only affects USP9X (Dunnett multiple comparisons test; ***: 

p<0.001; see Methods for statistics and Supplementary Figure 2 for uncropped immunoblots). 

Figure 4: Inhibition of USP9X catalytic activity depletes  ZNF598 and MKRN2 protein levels. 

A - HCT116 cells were treated for 4 or 24 hours with a selective USP9X inhibitor (FT709, 10µM). Cells 

were lysed in RIPA buffer and samples analysed by SDS-PAGE and immunoblotted for ZNF598 and 

USP9X. B - Correlation of two distinct experimental SILAC based proteomic datasets showing the de-

enrichment of ZNF598 and MKRN2 alongside known USP9X substrates (in black type) in HCT116 cells 

treated for 24 h with USP9X inhibitor (FT709, 10 µM). Outliers for which the ratio is either lower than 

Log2(-1.0) or larger than Log2(+1) in both datasets are shown in red.  C - Western blot validation of 

USP9X inhibitor sensitive proteins identified in B. HCT116 were treated with FT709 at 5 µM (CEP131), 

or 10 µM (all other samples) and analysed as in A. TPS: Total Protein Stain. D - De-enrichment of 

MKRN2 in USP9X knockout cells. HCT116 or HCT116 USP9x-/0 lysates were analysed by immunoblot 

with the indicated antibodies. 

Figure 5: USP9X ablation or inhibition impairs the ribosomal stalling response.  

A - HEK293 Flp-In T-Rex GFP-P2A-(KAAA)21-P2A-RFP wt cells (KAAA wt) were transfected with a 

plasmid containing Cas9 and gRNAs targeting USP9X or ZNF598. P = pool of USP9X guides, 1/2/4/7= 

individual USP9X guides, Z = ZNF598 guide. Lysates were analysed 168 hrs after transfection and 

selection in Puromycin, by immunoblotting with the indicated antibodies. B - Schematic of the 

fluorescent ribosomal stalling reporter expressed in this cell line. If stalling is not efficiently resolved, 

read-through occurs, the Flag-SR and RFP are expressed. C - FACS analysis of the RFP:GFP ratio in 

KAAA wt or ZNF598ko cells following transfection with px459-pSpCas9(BB)-2A-Puro_v2 containing 
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gRNA as indicated. Cells were gated for live singlets, then for GFP positive cells. Insets indicate the 

USP9X protein levels normalised to wt untransfected cells. D  - FACS analysis of the RFP:GFP ratio in 

wt cells following inhibition of USP9X by FT709 for 72 hrs.  E - KAAA wt cells were treated with 

indicated concentrations of FT709 as in D and analysed by immunoblotting with selected antibodies. 

TPS: Total Protein Stain. 

Supplementary Figure 1. ZNF598 antibody validation. HEK293 Flp-In T-Rex GFP-P2A-(KAA)21-P2A-

RFP wt or  ZNF598 knockout  (ko), and HCT116 wt or HCT116 USP9x-/0 cell lysates were analysed by 

immunoblotting with the indicated antibodies.   

Supplementary Figure 2. Full western blots of panels D, E and G shown in Figure 3.  
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