43 research outputs found

    Interleukin (IL)–12 and IL-23 Are Key Cytokines for Immunity against Salmonella in Humans

    Get PDF
    Patients with inherited deficiency of the interleukin (IL)–12/IL-23–interferon (IFN)–g axis show increased susceptibility to invasive disease caused by the intramacrophage pathogens salmonellae and mycobacteria. We analyzed data on 154 patients with such deficiency. Significantly more patients with IL-12/IL-23–component deficiency had a history of salmonella disease than did those with IFN-g–component deficiency. Salmonella disease was typically severe, extraintestinal, and caused by nontyphoidal serovars. These findings strongly suggest that IL-12/IL-23 is a key cytokine for immunity against salmonella in humans and that IL-12/IL-23 mediates this protective effect partly through IFN-g–independent pathways. Investigation of the IL-12/IL-23–IFN-g axis should be considered in patients with invasive salmonella disease

    The Panchromatic Hubble Andromeda Treasury I: Bright UV Stars in the Bulge of M31

    Full text link
    As part of the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle program, we observed a 12' \times 6.5' area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of \sim4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars and AGB-manqu\'e stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqu\'e (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {\alpha} abundances when the mass loss on the RGB is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch stars (EHB) and their progeny. We construct the first radial profiles of these stellar populations, and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UVX. We calculate that only a few percent of MS stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.Comment: Accepted for publication in Ap

    The SPLASH Survey: Kinematics of Andromeda's Inner Spheroid

    Full text link
    The combination of large size, high stellar density, high metallicity, and Sersic surface brightness profile of the spheroidal component of the Andromeda galaxy (M31) within R_proj ~ 20 kpc suggest that it is unlike any subcomponent of the Milky Way. In this work we capitalize on our proximity to and external view of M31 to probe the kinematical properties of this "inner spheroid." We employ a Markov chain Monte Carlo (MCMC) analysis of resolved stellar kinematics from Keck/DEIMOS spectra of 5651 red giant branch stars to disentangle M31's inner spheroid from its stellar disk. We measure the mean velocity and dispersion of the spheroid in each of five spatial bins after accounting for a locally cold stellar disk as well as the Giant Southern Stream and associated tidal debris. For the first time, we detect significant spheroid rotation (v_rot ~ 50 km/s) beyond R_proj ~ 5 kpc. The velocity dispersion decreases from about 140 km/s at R_proj = 7 kpc to 120 km/s at R_proj = 14 kpc, consistent to 2 sigma with existing measurements and models. We calculate the probability that a given star is a member of the spheroid and find that the spheroid has a significant presence throughout the spatial extent of our sample. Lastly, we show that the flattening of the spheroid is due to velocity anisotropy in addition to rotation. Though this suggests that the inner spheroid of M31 more closely resembles an elliptical galaxy than a typical spiral galaxy bulge, it should be cautioned that our measurements are much farther out (2 - 14 r_eff) than for the comparison samples.Comment: Accepted for publication in Ap

    The history, genome and biology of NCTC 30: a non-pandemic Vibrio cholerae isolate from World War One.

    Get PDF
    The sixth global cholera pandemic lasted from 1899 to 1923. However, despite widespread fear of the disease and of its negative effects on troop morale, very few soldiers in the British Expeditionary Forces contracted cholera between 1914 and 1918. Here, we have revived and sequenced the genome of NCTC 30, a 102-year-old Vibrio cholerae isolate, which we believe is the oldest publicly available live V. cholerae strain in existence. NCTC 30 was isolated in 1916 from a British soldier convalescent in Egypt. We found that this strain does not encode cholera toxin, thought to be necessary to cause cholera, and is not part of V. cholerae lineages responsible for the pandemic disease. We also show that NCTC 30, which predates the introduction of penicillin-based antibiotics, harbours a functional ÎČ-lactamase antibiotic resistance gene. Our data corroborate and provide molecular explanations for previous phenotypic studies of NCTC 30 and provide a new high-quality genome sequence for historical, non-pandemic V. cholerae

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant

    Get PDF
    SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination
    corecore