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The sixth global cholera pandemic lasted from 1899 to 1923. However,

despite widespread fear of the disease and of its negative effects on troop

morale, very few soldiers in the British Expeditionary Forces contracted cho-

lera between 1914 and 1918. Here, we have revived and sequenced the

genome of NCTC 30, a 102-year-old Vibrio cholerae isolate, which we believe

is the oldest publicly available live V. cholerae strain in existence. NCTC 30

was isolated in 1916 from a British soldier convalescent in Egypt. We

found that this strain does not encode cholera toxin, thought to be necessary

to cause cholera, and is not part of V. cholerae lineages responsible for the

pandemic disease. We also show that NCTC 30, which predates the intro-

duction of penicillin-based antibiotics, harbours a functional b-lactamase

antibiotic resistance gene. Our data corroborate and provide molecular

explanations for previous phenotypic studies of NCTC 30 and provide a

new high-quality genome sequence for historical, non-pandemic V. cholerae.

1. Introduction
Vibrio cholerae is the aetiological agent of cholera, a severe diarrhoeal disease

that has spread globally in seven pandemics since the 1800s [1]. The sixth

cholera pandemic occurred between 1899 and 1923 [2,3] and was caused by

V. cholerae of serogroup O1 and of the classical biotype, as were the recorded

pandemics prior to this [4]. The current seventh cholera pandemic began in

1961 and is caused by a different, ‘El Tor’, biotype of serogroup O1

and O139 V. cholerae [1]. Genome sequencing data have shown that classical

V. cholerae form a single phylogenetic lineage, distinct from the seventh

pandemic biotype El Tor (7PET) lineage which is causing the ongoing seventh

cholera pandemic [3–7].

In 1931, Mitchell & Smith compiled a comprehensive analysis of medical

statistics of the British Armies for World War One (WW1) [8]. These data

estimated that the British Expeditionary Forces incurred 11 096 338 casualties

during WW1 (equivalent casualty data for the Indian Armies were not

reported) [8]. Surprisingly, despite WW1 being concurrent with the sixth

cholera pandemic, the British Expeditionary Forces remained largely free of

cholera throughout this period. Although cholera’s epidemic potential was

both recognized and feared at this time [9,10], Mitchell & Smith report that

the British Expeditionary Forces experienced just 1918 cholera cases in the

year 1916, 209 cases in 1917 and 450 cases in 1918. Forty-nine cholera patients

died in 1917, and 106 died in 1918 [8]. All except one of these cases were associ-

ated with the Mesopotamian Expeditionary Force, which was first affected by
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cholera in 1916, when the disease was inadvertently trans-

mitted from the Turkish army via a contaminated water

source [8,11].

The V. cholerae strain ‘Martin 1’ (now dubbed NCTC 30)

was the 30th bacterial culture deposited with the National

Collection of Type Cultures (NCTC). It was isolated in 1916

from a British soldier convalescent in Egypt during WW1

and is believed to be of serogroup O2 (electronic supplemen-

tary material, figure S1). Because cholera was very infrequent

among British troops during WW1, it is interesting that

NCTC 30 was isolated at all. Moreover, the metadata describ-

ing NCTC 30 suggest that this isolate is both a unique,

historical curiosity and a source of information about V. cho-
lerae biology. We revived a freeze-dried culture of NCTC 30

and sequenced the genome of this isolate to completion

using both long- and short-read technologies. Here, we

describe a genomic and phenotypic analysis of this isolate

and compare our results to previous studies of NCTC 30

biology. Given the recent 100-year anniversary of the end of

WW1, it is poignant to note that our modern genomic and

phenotypic data have corroborated several historical reports

about the biology of NCTC 30. Taken together, these findings

illustrate the rich history, as well as biological insights, that

can be garnered from the study of bacterial pathogens.

2. Material and methods
(a) Strains, plasmids and oligonucleotides
Bacterial strains, plasmids and oligonucleotides (Sigma-Aldrich)

used in this study are listed in table 1. Strains were cultured

routinely on lysogeny broth (LB) media. Plasmids were main-

tained in strains by culturing on LB media supplemented with

100 mg ml21 ampicillin, 10 mg ml21 chloramphenicol or

10 mg ml21 tetracycline, where appropriate (table 1).

(b) Bacterial rehydration and recovery
Lyophilized V. cholerae cultures were recovered according to the

method published by Public Health England Culture Collections

(https://www.phe-culturecollections.org.uk/). For full details,

see the electronic supplementary material, Methods. Briefly, lyo-

philized bacterial stocks were rehydrated and cultured on LB

media overnight (passage 1). Colonies were purified on LB

and thiosulfate-citrate-bile salts-sucrose (TCBS) agar, a medium

selective for Vibrio species (passage 2). Colonies from TCBS

plates (or from LB plates if growth on TCBS agar was poor)

were cultured in LB liquid media for 24 h at 378C (passage 3).

Glycerol stocks from these cultures were stored at 2808C.

(c) Genomic DNA isolation and sequencing
Total nucleic acids were extracted for sequencing from V. cholerae
using the Masterpure Complete DNA and RNA Purification kit (Epi-

centre, no. MC85200), with modifications to the manufacturer’s

instructions. DNA was isolated from two independent clones of

NCTC 30 picked at passage 2 (dubbed MJD382 and MJD439) and

one clone of NCTC 5395 (MJD389), a strain that is closely related to

7PET V. cholerae [12]. All clones had been frozen at passage 3. Single

colonies isolated from these frozen stocks (passage 4) were used to

lawn LBagarplates,whichwere incubatedovernightat378C (passage

5) and used for genomic DNA (gDNA) isolation. Full details are

provided in the electronic supplementary material, Methods.

gDNA from NCTC 30 batch 3 was sequenced using the Illu-

mina X10 and the PacBio RSII platforms at the Wellcome Sanger

Institute. DNA fragments of approximately 450 bp were

produced from 0.5 mg gDNA for Illumina library creation and

were sequenced on a 150 bp paired-end run. Approximately

10 mg gDNA was used for PacBio sequencing, using polymerase

version P6 and C4 sequencing chemistry reagents. gDNA from

NCTC 30 batch 4 was sequenced on the PacBio Sequel platform.

(d) Genome assembly and annotation
Single-contig assemblies were generated for each of the two

NCTC 30 chromosomes from PacBio read data, using HGAP

v3 and the RS_HGAP_Assembly.2 protocol via SMRT Portal run-

ning SMRT Analysis v2.3.0.140936.p5.167094 [15]. These

sequences were circularized using CIRCLATOR v1.5.3 [16] using

the assembly and the corrected reads. A final assembly was

obtained by using the circularized sequences as a reference for

re-assembly of the PacBio reads with the RS_Resequencing.1 pro-

tocol, which was corrected using QUIVER v1. Assemblies were

annotated using PROKKA v1.5 [17] and a genus-specific database

[18]. The PacBio sequencing reads covered the finished assembly

to an average depth of 148.01 X. For parameter details, see the

electronic supplementary material, Methods.

Short-read data used for pangenome analyses (electronic sup-

plementary material, table S1) were assembled using SPAdes

v3.8.2 [19] as part of a high-throughput analysis pipeline and anno-

tated using PROKKA v1.5 [17,20]. Sequences that were available only

as assemblies (i.e. for which the raw sequencing reads were not

available in reference databases for de novo assembly) were similarly

annotated using PROKKA v1.5 for uniformity within the dataset.

(e) Genome visualization, synteny plots and
antimicrobial resistance gene detection

The NCTC 30 genome was visualized using the GVIEW web

server (https://server.gview.ca/), which relies on CGVIEW [21].

Synteny plots were produced using EASYFIG [22] and ACT [23],

which rely on BLASTn [24] for sequence comparisons. A mini-

mum identity percentage of 85%, maximum e-value of 0.001

and minimum length of 0 were chosen as BLASTn cut-offs for

EASYFIG visualization purposes. Antimicrobial resistance genes

were detected in the genome assembly using the RESFINDER

web server v3.1.0 [25] with default settings (90% identity, 60%

minimum length) and database version 2018-02-19.

( f ) Phylogenetic analysis and lineage assignment
A pangenome was constructed from annotated genome assemblies

of 198 V. cholerae isolates and three Vibrio spp. using ROARY

v1.007001 [26], with options: ‘-e –mafft -s -cd 97’. A core-gene align-

ment of 2622 genes was produced. This alignment was trimmed

using TRIMAl v1.2 [27], and non-variable positions were removed

using SNP-SITES v2.3.2 [28]. A maximum-likelihood phylogenetic

tree was constructed from this alignment of 192 451 variant sites

using IQ-TREE v1.5.5 [29], under the general time reversible (GTR)

and ascertainment bias correction (ASC) models, the latter of

which is optimized for accepting alignments that consist entirely

of variable nucleotides [30]. Five thousand ultrafast bootstrap

approximations [31] and approximate likelihood ratio tests [32]

were performed. Phylogenetic trees were visualized using FIGTREE

v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) and iTOL [33]

and were annotated manually.

Vibrio cholerae genomes were assigned to phylogenetic lineages

based on previous reports [7], their position in the maximum-like-

lihood phylogeny and with the support of a hierarchical Bayesian

analysis of population structure (BAPS) [34]. Private single nucleo-

tide polymorphisms (SNPs) (i.e. SNPs found in one genome only)

were removed from the variable nucleotide alignment used for

phylogenetic analysis using extract_PI_SNPs.py (https://gist.

github.com/jasonsahl/9306cd014b63cae12154), to produce an
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alignment of 136 993 parsimony-informative variable nucleotides,

used as the input for BAPS (with options L ¼ 3, K ¼ 500).

(g) Plasmid extraction, polymerase chain reaction and
molecular cloning

Plasmids were isolated from Escherichia coli using the QIAprep Spin

Miniprep kit (Qiagen, no. 27104). Reaction intermediates were pur-

ified using the QIAquick polymerase chain reaction (PCR)

Purification kit (Qiagen, no. 28104). Full details of the blaCARB-like

cloning protocol are reported in the electronic supplementary

material, Methods—briefly, blaCARB-like was amplified from

MJD382 gDNA using oMJD96 and oMJD97 and Phusionw high-

fidelity DNA polymerase (NEB, no. M0530S). This insert and

pACYC184 were digested with BamHI and SalI (NEB, no. R3136S

and no. R3138S), and pACYC184 was treated with rSAP (NEB,

no. M0371S). Digested insert and vector were purified, mixed in a

molar ratio of approximately 3 : 1 and ligated using T4 DNA

ligase (NEB, no. M0202S). Competent E. coli was transformed

with ligation mixtures as per the manufacturer’s instructions. Con-

structs were verified by PCR using oMJD88 and oMJD89, and by

Sanger sequencing (GATC/Eurofins) with oMJD98 and oMJD99.

(h) Confirmation of genomic observations
The Illumina short-reads for NCTC 30 were mapped to the NCTC

30 assembly using SMALT v0.5.8 (http://www.sanger.ac.uk/

science/tools/smalt-0), and visualized using ARTEMIS and

BAMVIEW [35,36] (electronic supplementary material, figure S3).

The flrC mutation was confirmed by amplifying flrC from V. cholerae
gDNA using Phusionw and primers oMJD135 and oMJD136. The

resultant amplicon was purified and sequenced (GATC/Eurofins).

(i) Growth curves
In order to assess bacterial growth kinetics, single colonies of

V. cholerae were suspended in 0.5 ml LB broth by vortexing

(10 s). Two microlitres of this suspension were used to inoculate

Table 1. Strains, plasmids and oligonucleotides. (Restriction enzyme recognition sites are in bold. AmpR: ampicillin resistant; CmR: chloramphenicol resistant;
TcR: tetracycline resistant. AmpS: ampicillin sensitive. TcS: tetracycline sensitive.)

internal strain ID strain name genotype/details source/reference

Vibrio cholerae

MJD382 NCTC 30 Martin 1 isolated in 1916; Alexandria, Egypt. Non-O1/O139 ( probably

O2). AmpR

NCTC, batch 3

MJD439 second clone of NCTC 30. AmpR

MJD367 NCTC 10732 CN 3534; 384/52 isolated in 1952; India. Serotype O1 Inaba, classical biotype NCTC, batch 2

MJD389 NCTC 5395 Iraq isolated in 1938; Iraq. Serotype O1 Ogawa, El Tor biotype. Pre-

seventh pandemic. AmpS

NCTC, batch 7.

Sequenced by

Hu et al. [12]

Escherichia coli

MJD839 ER2420 pACYC184 K-12 cloning strain harbouring pACYC184. CmR TcR Francesca Short/New

England Biolabs

MJD841 NEBw 5-alpha fhuA2 D(argF-lacZ)U169 phoA glnV44 F80 D(lacZ)M15

gyrA96 recA1 relA1 endA1 thi-1 hsdR17

New England Biolabs

MJD842 NEBw 5-alpha pUC19 K-12 cloning strain harbouring pUC19. AmpR this study

MJD844 NEBw 5-alpha pACYC184 K-12 cloning strain harbouring pACYC184. CmR TcR this study

MJD847 MJD847 NEBw 5-alpha harbouring pMJD61. AmpR CmR TcS this study

plasmid name genotype/details source/reference

pACYC184 low-copy cloning vector. CmR TcR [13]

pUC19 high-copy cloning vector, ampicillin-

resistance positive control. AmpR

[14]

pMJD61 pACYC184 V(tet:: blaCARB-like). AmpR

CmR TcS

This study

primer ID other name sequence 5’-3’

oMJD96 BamHI_blaCARB-like-NCTC30_orf_5 CCGGATCCGGTTTCAGTGCCTAATGCTTTAAGTTAAGATG

oMJD97 blaCARB-like-NCTC30_orf_SalI_3 CCGTCGACATCAACGCGACTGTGATGTATAAACTTCAA

oMJD88 blaCARB-like-NCTC30_int_5 TGGGGTCACATACATGAAGTCT

oMJD89 blaCARB-like-NCTC30_int_3 CAGCAATACTCCACTTCACTG

oMJD98 pACYC184_tet_seq_Pf GTTAAATTGCTAACGCAGTC

oMJD99 pACYC184_tet_seq_Pr GTGAATCCGTTAGCGAGGTG

oMJD135 VC_2135_check_Pf GTCAGGCAGATAGCTCAAACT

oMJD136 VC_2135_check_Pr CTCATTGCTACCTCTGATGCC
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150 ml LB in a 96-well microtitre plate (Corning CoStar no. 3595,

flat-bottomed). A gas-permeable seal was applied to the plate,

which was incubated at 378C with shaking in a BMG Fluostar

Omega microtitre plate reader for 24 h. Details of the incubation

program are reported in the electronic supplementary material,

Methods.

( j) Antibiotic sensitivity assay
Ampicillin sensitivity was assessed using MICEvaluator Ampi-

cillin test strips (Oxoid, no. MA0110F). Lawns of bacterial

growth were prepared as for gDNA isolations, and plasmid-har-

bouring strains were cultured with the selection. Sections of the

lawn were suspended in 1.0 ml LB medium. The OD600 of this

suspension was normalized to 0.5, and cotton swabs were used

to inoculate LB agar with these standardized suspensions.

Plates were dried for 15 min, before an MICEvaluator test strip

was applied to the plate surface. Plates were incubated for 20 h

at 378C. Break points were determined using the manufacturer’s

instructions.

(k) Motility assay
In order to determine the motility of V. cholerae strains, bacterial

colonies were picked and suspended in 0.5 ml LB media. Two

microlitres of this suspension were used to inoculate motility

LB agar plates (0.3% agar in 140 mm dishes). The pipette tip

was pushed through the agar surface during inoculation. Plates

were incubated face up at 378C.

(l) Transmission electron microscopy
Bacterial morphologies were determined using transmission elec-

tron microscopy. Bacterial colonies were picked and suspended

in 0.5 ml sterile water. The suspension (4 ml) was applied to a

glow-discharged Formvar carbon film copper transmission elec-

tron microscopy grid (FCF-100-Cu) and mixed with ammonium

molybdate solution (2.5% final concentration). Images were

acquired using an FEI Tecnai G2 Spirit BioTWIN.

3. Results and discussion
(a) Sequencing and analysis of the NCTC 30 genome
Previously published data indicated that NCTC 30 was not of

serogroup O1 and was therefore unlikely to be a sixth pandemic

V. cholerae isolate [37] (the isolate is likely to be of serogroup O2;

electronic supplementary material, figure S1). We were intri-

gued by this, since it was isolated from a hospitalized patient

reportedly suffering from diarrhoea [37]. We revived NCTC 30

from batch 3 of NCTC’s freeze-dried stocks, a lyophilized bac-

terial culture that was prepared in 1962 (electronic

supplementary material, figure S1). Given the age of this isolate,

we used long- and short-read technologies to sequence high-

molecular weight gDNA from a minimally passaged culture

of NCTC 30 to avoid sequencing a spontaneous mutant.

We constructed a pangenome using a collection of 197

other publicly available V. cholerae genome sequences, and

those of three Vibrio spp. that are closely related to V. cholerae.

A maximum-likelihood phylogeny produced from the resul-

tant core-gene alignment of 2622 genes showed that NCTC 30

is more closely related to Vibrio cholerae sequences than to

other members of the Vibrio genus, although NCTC 30 is

part of a clade that is separated from many of the V. cholerae
in this collection (figure 1a; electronic supplementary

material, table S1). This observation is logical when con-

sidered together with a taxonomic study of V. cholerae
performed in 1970, which questioned whether NCTC 30 is

a true member of the V. cholerae species [38]. The phylogenetic

separation which we observed is likely to reflect the

phenotypic and molecular differences that questioned the

classification of NCTC 30 [38]. However, our data do indicate

that NCTC 30 is a V. cholerae isolate, as are its closest relatives

(electronic supplementary material, table S1; [7]).

The NCTC 30 genome assembly comprised two circular-

ized contigs, one corresponding to the larger chromosome 1

of 2 922 904 bases, and one to the smaller chromosome 2 of

Vibrio cholerae

7PET

NCTC 30
0.06

Vibrio sp. RC586

Vibrio spp.

V. metoecus RC341
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type III secretion system
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Figure 1. The NCTC 30 genome sequence and its relatedness to Vibrio cholerae. (a) An unrooted maximum-likelihood phylogeny shows that NCTC 30 clusters
together with six isolates that have been previously reported to be Vibrio cholerae (electronic supplementary material, table S1). Pandemic lineages are highlighted.
Scale bar denotes the number of mutations per variable site. (b) An inversion of approximately 1 040 746 bases between VC_1056 and VC_2013 was identified in
NCTC 30 chromosome 1, relative to that of the N16961 reference sequence. NCTC 30 lacks the pathogenicity islands found in 7PET or classical V. cholerae. The NCTC
30 sequence has been reversed for illustrative purposes.
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1 029 451 bases (electronic supplementary material,

figure S2). A comparison between these sequences and

those of the O1 El Tor V. cholerae reference strain, N16961

[39] revealed a large inversion in NCTC 30 chromosome 1

of approximately 1 040 746 bases, between genes VC_1056
and VC_2013 (figure 1b). The inversion does not encompass

the crtS locus and should not interfere with the rate and

timing of chromosome 2 replication [40]. We confirmed that

this inversion was not an artefact of genome assembly by

mapping the NCTC 30 short-reads to the PacBio assembly

and to N16961, identifying paired-end reads that mapped

to either side of the inversion junction, as well as individual

reads whose sequence spanned the junction itself (electronic

supplementary material, figure S3). This was confirmed

further using sequencing data from a second gDNA isolation

from MJD382, as well as from MJD439, an independent

colony of NCTC 30 separated from MJD382 at passage 1

(see Material and methods; electronic supplementary

material, table S2).

(b) NCTC 30 does not produce flagella
We found NCTC 30 to be extremely difficult to culture under

our standard laboratory conditions—it has a growth defect

on rich media at 378C relative to other V. cholerae in our col-

lection. Exemplar growth kinetic data from liquid culture

illustrate this (figure 2a). An examination by electron

microscopy showed that NCTC 30 lacked monotrichous

flagella, in contrast with the phenotype expected for

V. cholerae (figure 2b), and we confirmed that NCTC 30 is

not motile (electronic supplementary material, figure S4).

Note that we used NCTC 10732 as a control strain for electron

microscopy experiments, because the majority of flagella

studies in this species have been performed using classical

V. cholerae [43–45].

The genes and proteins involved in V. cholerae flagellum

expression are well-characterized [43–45]. We hypothesized

that disruption to this pathway might have caused the

observed phenotypes (figure 2a,b; electronic supplementary

material, figure S4). We identified a frameshift in the 30

region of flrC (VC_2135) in NCTC 30, which encodes the

FlrC response regulator governing the expression of Class

III flagellum biosynthesis genes [45]. Class III genes encode

the flagellar cap, the MotX motor component and the core fla-

gellin FlaA [43]. All Class III genes were intact in NCTC 30.

The frameshift was predicted to truncate FlrC, removing

the last 48 amino acids from the C-terminus of the protein

(figure 2c). This region is predicted to serve as the DNA bind-

ing domain of the response regulator; accordingly, we believe

that this frameshift prevents FlrC trans-activating the Class III

flagellum biosynthesis genes in NCTC 30, abolishing its abil-

ity to manufacture flagella. The morphology of NCTC 30 is

consistent with that of an flrB targeted mutant [45]. FlrB

acts as the sensor kinase in the FlrBC two-component

system, and because both proteins cooperate to regulate

Class III gene expression, this would explain why flrB and

flrC mutations appear to phenocopy one another.

In contrast with our observations, Davis & Park reported

that NCTC 30 expressed monotrichous flagella [46]. This

report was submitted for publication in April 1962 [46],

prior to the preparation of batch 3 of NCTC 30 (electronic

supplementary material, figure S1). We hypothesized that

the flrC mutation may have arisen during the preparation

of batch 3, during long-term storage [47], or during passage

in our laboratory. We confirmed that this mutation was pre-

sent in the genome sequences of MJD382 and MJD439, and

used the high-accuracy Illumina short-read data to verify

that the repetitive sequence was not an artefact of long-read

assembly. This suggested either that this mutation predated

the introduction of the strain into our laboratory or had

arisen immediately upon rehydration of our lyophilized

stock. Therefore, we prepared gDNA from batch 4 of NCTC

30 in a laboratory separate to that in which MJD382 and

MJD439 were handled. Batch 4 was lyophilized in 1985

from a culture of batch 3 bacteria (electronic supplementary

material, figure S1). We amplified and sequenced flrC from

this preparation and confirmed that the flrC frameshift

mutation was present in batch 4 of NCTC 30 (electronic sup-

plementary material, figure S5). This indicates strongly that

the mutation arose either during or prior to the preparation

of batch 3 of this lyophilized culture and that this mutation

ought to be present in NCTC 30 cultures which are purchased

from NCTC in the future.

(c) Virulence determinants harboured by NCTC 30
In the absence of any clinical data, we explored the genome of

NCTC 30 to determine if it was likely to be the aetiological

agent of ‘choleraic diarrhoea’ [37]. CTXw, the lysogenic bac-

teriophage that encodes the cholera toxin (CT), was absent

in its entirety from both chromosomes of NCTC 30

(figure 1b; electronic supplementary material, figure S6). Sev-

eral other pathogenicity islands have been associated with

virulence in V. cholerae [5,48,49], and we used synteny com-

parisons and the mapping of NCTC 30 reads to the N16961

reference to confirm that NCTC 30 lacks Vibrio pathogenicity

islands 1 and 2 (VPI-1 and VPI-2), Vibrio seventh pandemic

islands 1 and 2 (VSP-1, VSP-2) and the integrative conjugative

element SXT/R391 (figure 1; electronic supplementary

material, figure S6 and table S3).

As NCTC 30 lacked CTXw, we hypothesized that an

alternative virulence factor may have rendered this strain

pathogenic. Even in the absence of CT, V. cholerae can express

secondary virulence factors including a haemolysin, the

MARTX toxin, a mannose-sensitive haemagglutinin type IV

pilus (MSHA), a heat-stable enterotoxin and a type III

secretion system (T3SS) [1,50–53]. Non-O1/O139 V. cholerae
lacking CT can cause various forms of diarrhoea, some

using T3SS to achieve this [50,54,55]. Otherwise-uncharacter-

ized cytotoxic factors can lead to non-O1/O139 V. cholerae
causing non-diarrhoeal infections such as sepsis [56].

We examined the NCTC 30 genome for the presence of

the zot, ace, hlyA, rtxA, rtxC, hapA, MSHA and heat-stable

enterotoxin accessory virulence genes (electronic supplemen-

tary material, table S3), and identified a genomic island in

NCTC 30 which encodes a putative T3SS. This island is inte-

grated between VC_1757 and VC_1810, in place of VPI-2 in

N16961 (figure 1b). This T3SS is more similar to the T3SS

found in the genome of Vibrio parahaemolyticus strain 10329

[57] than the T3SS found in V. cholerae AM_19226, the

strain used to characterize T3SS activity in V. cholerae
[50,51] (figure 3a). A handwritten note on the NCTC’s

internal quality check card for NCTC 30 refers to ‘intermedi-

ate V. cholerae/V. parahaemolyticus’ (electronic supplementary

material, figure S1). No further information is available to

explain why this note was made, though the presence of
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the genes encoding a V. parahaemolyticus T3SS in this isolate is

intriguing.

Three V. cholerae genomes in our dataset, TUC_T2734,

1587 and 623-39, lack CTXw but contained genes similar to

those of the NCTC 30 T3SS (figure 3b; BLASTp similarity

cut-off of 95%). Isolates 1587 and 623-39 have previously

been reported to encode T3SS [58]. It may be that the T3SS

encoded by these isolates, and NCTC 30, was responsible

for clinical symptoms that led to the isolation of these bac-

teria. We also cannot exclude the possibility that the patient

was co-infected with another pathogen in addition to

NCTC 30, either an O1 V. cholerae or another bacterium

such as enterotoxigenic E. coli [59,60], which might also

have caused ‘choleraic diarrhoea’.

(d) NCTC 30 displays reduced susceptibility to ampicillin
Davis & Park reported that NCTC 30 was resistant to penicil-

lin, at a concentration which partially inhibited the growth of

NCTC 5395 [46]. RESFINDER [25] identified one resistance gene

in the NCTC 30 genome that is 99.77% identical in nucleotide

sequence (two base mismatches) to the blaCARB-7 gene,

GenBank accession no. AF409092. This blaCARB-like variant

b-lactamase gene, dubbed blaCARB-like, is located within

the super-integron of NCTC 30 chromosome 2 (electronic

supplementary material, figure S2). Although the super-

integron is a highly repetitive region of the genome [61],

we were able to assemble this region fully using our

long-read data.
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Figure 2. NCTC 30 is impaired in its ability to produce flagella. (a) NCTC 30 has a growth defect at 378C relative to NCTC 5395. Under these conditions, V. cholerae
does not grow to an OD600 exceeding 1.0—accordingly, a non-logarithmic Y-axis scale has been used. Representative data from single biological experiments are
reported, figure produced using R v3.3.2 and ggplot2 [41]. (b) Transmission electron microscopy demonstrates that NCTC 30 does not produce the polar mono-
trichous flagellum that is characteristic of V. cholerae, represented here by NCTC 10732, a classical biotype strain. (c) NCTC 30 contains a frameshift mutation in the
30-end of flrC relative to the N16961 reference sequence, predicted to produce a truncated polypeptide lacking the C-terminal FlrC DNA binding domain. FlrC
domains were annotated using INTERPROSCAN (https://www.ebi.ac.uk/interpro) [42]. flrC 30 sequences were aligned using BLASTn [24]. flrC open reading frame:
grey box. FlrC protein domains: black ovals. Figures not to scale.
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The presence of a DNA sequence encoding a putative

b-lactamase neither means that the gene is itself expressed,

nor that the gene function is that which it has been predicted

to be. We used MICEvaluator strips to test semi-quantitatively

whether NCTC 30 was resistant to ampicillin. Consistent

with previous reports, we found that NCTC 30 has

decreased sensitivity to ampicillin relative to NCTC 5395,

the strain to which NCTC 30 had been compared

previously [46] (MICEvaluator break points of 16 versus

2 mg ml21; figure 3c). We cloned blaCARB-like into pACYC184,

a low-copy vector that confers resistance to chloramphenicol

and tetracycline [13] (electronic supplementary material,
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Figure 3. NCTC 30 is resistant to b-lactams and harbours virulence genes similar to those of V. parahaemolyticus. (a) The T3SS encoded by NCTC 30 is most similar
to one encoded by V. parahaemolytius strain 10329 and is dissimilar to that encoded by V. cholerae AM_19226 [50]. The chromosomal integration locus for T3SS in
both NCTC 30 and AM_19226 is the same. The genes flanking the T3SS in V. parahaemolyticus are not similar to those of V. cholerae. (b) The phylogenetic tree
from figure 1a is presented, rooted on the Vibrio spp. outgroup. Select V. cholerae lineages [7] are indicated. Genomes that contain homologues of the T3SS and
b-lactamase genes found in NCTC 30 (95% amino acid identity cut-off ) are indicated. NCTC 30 is the only isolate in the collection in which these elements are
coincident. Approximate likelihood ratio test result and bootstrap support percentages for major nodes are shown. Scale bar denotes the number of mutations per
variable site. (c) NCTC 30 resists ampicillin to a greater extent than NCTC 5395. Break points are indicated with arrows. The faint growth of NCTC 30 close to the test
strip above the 16 mg ml21 position resembles satellite colonies that emerge owing to b-lactam degradation by enzyme secreted by adjacent bacterial culture.
pMJD61, containing blaCARB-like, confers ampicillin resistance to the same level as the pUC19 ampicillin-resistance plasmid in E. coli.
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figure S7). The resultant plasmid, pMJD61, rendered E. coli
resistant to ampicillin to a level equivalent to that conferred

by pUC19, a plasmid encoding a b-lactamase [14]

(figure 3c). We conclude that blaCARB-like encodes a functional

ampicillin-resistance determinant, which can be expressed in

members of the Vibrionaceae and the Enterobacteriaceae.

We used BLASTx to scan the nr database using the

translated blaCARB-like sequence as a query. The most

similar sequences (99% amino acid similarity) were those of

the V. cholerae b-lactamases CARB-7 and CARB-9. CARB-7

was first described in an environmental V. cholerae isolated

in Argentina that resisted ampicillin to an minimum inhibitory

concentration (MIC) of 256 mg ml21 [62]. Like blaCARB-like,

the gene encoding CARB-7 is located within the

super-integron of chromosome 2 [62]. CARB-9 is also an inte-

gron-encoded b-lactamase, first identified in environmental

non-O1/O139 V. cholerae from Argentina [63]. The isolate

that harboured CARB-9 resisted ampicillin to an MIC of

64 mg ml21 [63].

Ten blaCARB-like homologues were present in our pangen-

ome dataset (BLASTp similarity cut-off of 95%), in strains

closely related to NCTC 30 as well as in the MX-3 lineage

of O1 V. cholerae, isolated in Mexico during 2000 [7]

(figure 3b; electronic supplementary material, table S1).

Although a b-lactamase gene, blaCARB-2, was reported by

Domman et al. to be present in MX-3, the phenotypic data

available for strain 82711, also containing blaCARB-2, indicated

that this strain was not resistant to penicillin-derived antimi-

crobials [7]. We suggest that this apparent discordance

may reflect variety in b-lactam resistance phenotypes in

V. cholerae; blaCARB-2 might elevate b-lactam resistance, but

not to a level sufficient to classify a strain as ‘resistant’ to

an antimicrobial.

NCTC 30 predates the introduction of penicillin as an

antibiotic, the antimicrobial activity of which was first

reported by Fleming in 1929 [64]. Consequently, NCTC 30

is unlikely to have acquired its drug resistance phenotype

in response to selective pressures imposed by the therapeutic

use of antibiotics. It is also worth noting that b-lactams are

not recommended for the treatment of cholera [65,66]. We

suggest that NCTC 30 may possess blaCARB-like in order to pro-

tect itself from antibiotics in its environment—i.e. to defend

itself against antibiotic-producing microorganisms with

which it might coexist in the environment. This may explain

why this strain, although resistant to ampicillin to a greater

extent than other V. cholerae, does not resist the antibiotic

completely; it may be that blaCARB-like is expressed at levels

sufficient to protect NCTC 30 from diffuse, low-concentration

antibiotics present in an environment.

4. Conclusion
Piecing together the history of cholera pandemics requires

not only an understanding of pandemic V. cholerae lineages

but also a view of the more diverse non-pandemic V. cholerae
that are contemporaneous with the pandemics. NCTC 30 was

isolated at a time when the sixth cholera pandemic was

waning [2,3]. Very few V. cholerae isolates and genome

sequences are available from this time period, making

NCTC 30 a valuable isolate for future evolutionary studies

of the V. cholerae species.

We have presented a genomic and phenotypic character-

ization of this non-pandemic, 102-year-old isolate, and have

compared it to other V. cholerae, including strains to which

it has been compared directly in previous reports [46]. The

unusual phylogenetic position of NCTC 30 suggests that

this sequence has considerable use in the study of the non-

O1/O139 and non-pandemic V. cholerae, and by providing

the genome sequence of NCTC 30 as a community resource,

we complement the availability of live NCTC 30 as a biologi-

cal resource for researchers. Although this isolate proved

difficult to manipulate experimentally, we have been able to

explore three key historical observations made about this

strain: a molecular explanation for its decreased sensitivity

to b-lactams relative to NCTC 5395, phylogenetic data on

its relationship to the V. cholerae species and evidence for a

pathogenicity island that may have been responsible for caus-

ing diarrhoea in 1916. We have also described differences

between our stocks of NCTC 30 and previous reports—

namely, the ability of NCTC 30 to produce flagella. Given

the age of this isolate, these differences might be owing to

genetic changes that occurred during its long-term storage.

We have demonstrated that blaCARB-like is a functional

ampicillin-resistance gene when introduced into an E. coli
cloning strain. Genomic and phenotypic characterization of

NCTC 1, a Shigella flexneri isolated during WW1, showed

that this strain was also resistant to penicillin (among other

antimicrobials) despite predating the antibiotic era [67].

The fact that blaCARB-like is located within the V. cholerae
super-integron suggests that this gene may have been

acquired horizontally, and its compatibility with another

bacterial genus is intriguing. These data re-iterate the fact

that the presence of antimicrobial resistance genes in bac-

terial pathogens predates the introduction of antibiotic

therapies [68,69].
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