2,197 research outputs found

    Reproduction and Dispersal of Biological Soil Crust Organisms

    Get PDF
    Biological soil crusts (BSCs) consist of a diverse and highly integrated community of organisms that effectively colonize and collectively stabilize soil surfaces. BSCs vary in terms of soil chemistry and texture as well as the environmental parameters that combine to support unique combinations of organisms—including cyanobacteria dominated, lichen-dominated, and bryophyte-dominated crusts. The list of organismal groups that make up BSC communities in various and unique combinations include—free living, lichenized, and mycorrhizal fungi, chemoheterotrophic bacteria, cyanobacteria, diazotrophic bacteria and archaea, eukaryotic algae, and bryophytes. The various BSC organismal groups demonstrate several common characteristics including—desiccation and extreme temperature tolerance, production of various soil binding chemistries, a near exclusive dependency on asexual reproduction, a pattern of aerial dispersal over impressive distances, and a universal vulnerability to a wide range of human-related perturbations. With this publication, we provide literature-based insights as to how each organismal group contributes to the formation and maintenance of the structural and functional attributes of BSCs, how they reproduce, and how they are dispersed. We also emphasize the importance of effective application of molecular and microenvironment sampling and assessment tools in order to provide cogent and essential answers that will allow scientists and land managers to better understand and manage the biodiversity and functional relationships of soil crust communities

    Health selection into neighborhoods among patients enrolled in a clinical trial

    Get PDF
    Health selection into neighborhoods may contribute to geographic health disparities. We demonstrate the potential for clinical trial data to help clarify the causal role of health on locational attainment. We used data from the 20-year United Kingdom Prospective Diabetes Study (UKPDS) to explore whether random assignment to intensive blood-glucose control therapy, which improved long-term health outcomes after median 10 years follow-up, subsequently affected what neighborhoods patients lived in. We extracted postcode-level deprivation indices for the 2710 surviving participants of UKPDS living in England at study end in 1996/1997. We observed small neighborhood advantages in the intensive versus conventional therapy group, although these differences were not statistically significant. This analysis failed to show conclusive evidence of health selection into neighborhoods, but data suggest the hypothesis may be worthy of exploration in other clinical trials or in a meta-analysis. Keywords: Neighborhoods, Self-selection, Health, Equity, Socioeconomic statu

    Global and regional effects of the photochemistry of CH_3O_2NO_2: evidence from ARCTAS

    Get PDF
    Using measurements from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment, we show that methyl peroxy nitrate (CH_3O_2NO_2) is present in concentrations of ~5–15 pptv in the springtime arctic upper troposphere. We investigate the regional and global effects of CH_3O_2NO_2 by including its chemistry in the GEOS-Chem 3-D global chemical transport model. We find that at temperatures below 240 K inclusion of CH_3O_2NO_2 chemistry results in decreases of up to ~20 % in NO_x, ~20 % in N_2O_5, ~5 % in HNO3, ~2 % in ozone, and increases in methyl hydrogen peroxide of up to ~14 %. Larger changes are observed in biomass burning plumes lofted to high altitude. Additionally, by sequestering NO_x at low temperatures, CH_3O_2NO_2 decreases the cycling of HO_2 to OH, resulting in a larger upper tropospheric HO_2 to OH ratio. These results may impact some estimates of lightning NO_x sources as well as help explain differences between models and measurements of upper tropospheric composition

    Validation of an electrogoniometry system as a measure of knee kinematics during activities of daily living

    Get PDF
    Purpose: The increasing use of electrogoniometry (ELG) in clinical research requires the validation of different instrumentation. The purpose of this investigation was to examine the concurrent validity of an ELG system during activities of daily living. Methods: Ten asymptomatic participants gave informed consent to participate. A Biometrics SG150 electrogoniometer was directly compared to a 12 camera three dimensional motion analysis system during walking, stair ascent, stair descent, sit to stand, and stand to sit activities for the measurement of the right knee angle. Analysis of validity was undertaken by linear regression. Standard error of estimate (SEE), standardised SEE (SSEE), and Pearson’s correlation coefficient r were computed for paired trials between systems for each functional activity. Results: The 95% confidence interval of SEE was reasonable between systems across walking (LCI = 2.43 °; UCI = 2.91 °), stair ascent (LCI = 2.09 °; UCI = 2.42 °), stair descent (LCI = 1.79 °; UCI = 2.10 °), sit to stand (LCI = 1.22 °; UCI = 1.41 °), and stand to sit (LCI = 1.17 °; UCI = 1.34 °). Pearson’s correlation coefficient r across walking (LCI = 0.983; UCI = 0.990), stair ascent (LCI = 0.995; UCI = 0.997), stair descent (LCI = 0.995; UCI = 0.997), sit to stand (LCI = 0.998; UCI = 0.999), and stand to sit (LCI = 0.996; UCI = 0.997) was indicative of a strong linear relationship between systems. Conclusion: ELG is a valid method of measuring the knee angle during activities representative of daily living. The range is within that suggested to be acceptable for the clinical evaluation of patients with musculoskeletal conditions

    GENETIC MAPPING OF GENE EXPRESSION LEVELS: EXPRESSION LEVEL POLYMORPHISM ANALYSIS FOR DISSECTING REGULATORY NETWORKS OF PLANT DISEASE RESISTANCE

    Get PDF
    The genetic basis of inherited traits has been studied through di erent approaches in many areas of science. Examples include quantitative trait locus (QTL) analysis and mutant analysis in genetics, genome sequencing and gene expression analysis in genomics. Each of these approaches is used for the investigation of complex traits, such as disease resistance, but also provides knowledge on components of complex biological systems. We introduce a novel functional genomics approach that integrates two areas, genetics and genomics, by applying QTL analysis to quantitative di erences in the mRNA abundance of trait-related genes. This approach allows comprehensive dissection of regulatory networks for complex traits at a systems biology level. We also address statistical issues, and suggest guidelines for future experiments in this new framework

    Hydroxy nitrate production in the OH-initiated oxidation of alkenes

    Get PDF
    Alkenes are oxidized rapidly in the atmosphere by addition of OH and subsequently O_2 leading to the formation of β-hydroxy peroxy radicals. These peroxy radicals react with NO to form β-hydroxy nitrates with a branching ratio α. We quantify α for C_2–C_8 alkenes at 295 K ± 3 and 993 hPa. The branching ratio can be expressed as α = (0.045 ± 0.016) × N − (0.11 ± 0.05) where N is the number of heavy atoms (excluding the peroxy moiety), and listed errors are 2σ. These branching ratios are larger than previously reported and are similar to those for peroxy radicals formed from H abstraction from alkanes. We find the isomer distributions of β-hydroxy nitrates formed under NO-dominated peroxy radical chemistry to be different than the isomer distribution of hydroxy hydroperoxides produced under HO2-dominated peroxy radical chemistry. Assuming unity yield for the hydroperoxides implies that the branching ratio to form β-hydroxy nitrates increases with substitution of RO_2. Deuterium substitution enhances the branching ratio to form hydroxy nitrates in both propene and isoprene by a factor of ~ 1.5. The role of alkene chemistry in the Houston region is re-evaluated using the RONO_2 branching ratios reported here. Small alkenes are found to play a significant role in present-day oxidant formation more than a decade (2013) after the 2000 Texas Air Quality Study identified these compounds as major contributors to photochemical smog in Houston

    Comprehensive Evaluation of Treatment and Outcomes of Low-Grade Diffuse Gliomas

    Get PDF
    Background Low-grade gliomas affect younger adults and carry a favorable prognosis. They include a variety of biological features affecting clinical behavior and treatment. Having no guidelines on treatment established, we aim to describe clinical and treatment patterns of low-grade gliomas across the largest cancer database in the United States. Methods We analyzed the National Cancer Database from 2004 to 2015, for adult patients with a diagnosis of World Health Organization grade II diffuse glioma. Results We analyzed 13,621 cases with median age of 41 years. Over 56% were male, 88.4% were white, 6.1% were black, and 7.6% Hispanic. The most common primary site location was the cerebrum (79.9%). Overall, 72.2% received surgery, 36.0% radiation, and 27.3% chemotherapy. Treatment combinations included surgery only (41.5%), chemotherapy + surgery (6.6%), chemotherapy only (3.1%), radiation + chemotherapy + surgery (10.7%), radiation + surgery (11.5%), radiation only (6.1%), and radiotherapy + chemotherapy (6.7%). Radiation was more common in treatment of elderly patients, 1p/19q co-deletion (37.3% versus 24.3%, p \u3c 0.01), and tumors with midline location. Median survival was 11 years with younger age, 1p/19q co-deletion, and cerebrum location offered survival advantage. Conclusions Tumor location, 1p/19q co-deletion, and age were the main determinants of treatment received and survival, likely reflecting tumor biology differences. Any form of treatment was preferred over watchful waiting in the majority of the patients (86.1% versus 8.1%). Survival of low-grade gliomas is higher than previously reported in the majority of clinical trials and population-based analyses. Our analysis provides a real world estimation of treatment decisions, use of molecular data, and outcomes

    Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking

    Get PDF
    Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL · kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise

    Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    Get PDF
    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes
    corecore