25 research outputs found

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Schmallenberg virus infection of ruminants: challenges and opportunities for veterinarians

    No full text
    Fran&ccedil;ois Claine, Damien Coupeau, Laetitia Wiggers, Beno&icirc;t Muylkens, Nathalie Kirschvink Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium Abstract: In 2011, European ruminant flocks were infected by Schmallenberg virus (SBV) leading to transient disease in adult cattle but abortions and congenital deformities in calves, lambs, and goat kids. SBV belonging to the Simbu serogroup (family Bunyaviridae and genus Orthobunyavirus) was first discovered in the same region where bluetongue virus serotype 8 (BTV-8) emerged 5 years before. Both viruses are transmitted by biting midges (Culicoides spp.) and share several similarities. This paper describes the current knowledge of temporal and geographical spread, molecular virology, transmission and susceptible species, clinical signs, diagnosis, prevention and control, impact on ruminant health, and productivity of SBV infection in Europe, and compares SBV infection with BTV-8 infection in ruminants. Keywords: Schmallenberg virus, Europe, ruminants, revie

    Schmallenberg virus among female lambs, Belgium, 2012

    Get PDF
    Reemergence of Schmallenberg virus (SBV) occurred among lambs (n = 50) in a sheep flock in Belgium between mid-July and mid-October 2012. Bimonthly assessment by quantitative reverse transcription PCR and seroneutralization demonstrated that 100% of lambs were infected. Viremia duration may be longer in naturally infected than in experimentally infected animals

    In vivo and in vitro identification of a hypervariable region in Schmallenberg virus

    No full text
    Detected for the first time in 2011, Schmallenberg virus (SBV) is an orthobunyavirus of the Simbu serogroup that caused a large outbreak in European ruminants. In a tight time frame, data have been obtained on SBV epidemiology and the clinical pictures associated with this new viral infection, but little information is available on the molecular biology of SBV. In this study, SBV sequence variability was characterized from the central nervous system of two stillborn lambs in a naturally infected herd. A hypervariable region (HVR) was detected in the N-terminal region of the SBV Gc glycoprotein through sequencing and analysis of the two full-length genomes representative of intra-herd SBV dissemination. In vitro growth assays coupled with full-length genome sequencing were performed on the two isolates after successive cellular passages, showing an in vitro adaptation of SBV and mutation accumulation inside the HVR in the absence of immune selective pressure.</jats:p

    Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database

    Get PDF
    Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p &lt; 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p &lt; 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013
    corecore