52 research outputs found
FBXL4 ubiquitin ligase deficiency promotes mitophagy by elevating NIX levels
Selective autophagy of mitochondria, mitophagy, is linked to mitochondrial quality control and as such is critical to a healthy organism. We have used a CRISPR/Cas9 approach to screen human E3 ubiquitin ligases for influence on mitophagy under both basal cell culture conditions and upon acute mitochondrial depolarization. We identify two cullin-RING ligase substrate receptors, VHL and FBXL4, as the most profound negative regulators of basal mitophagy. We show that these converge, albeit via different mechanisms, on control of the mitophagy adaptors BNIP3 and BNIP3L/NIX. FBXL4 restricts NIX and BNIP3 levels via direct interaction and protein destabilization, while VHL acts through suppression of HIF1α-mediated transcription of BNIP3 and NIX. Depletion of NIX but not BNIP3 is sufficient to restore mitophagy levels. Our study contributes to an understanding of the aetiology of early-onset mitochondrial encephalomyopathy that is supported by analysis of a disease-associated mutation. We further show that the compound MLN4924, which globally interferes with cullin-RING ligase activity, is a strong inducer of mitophagy, thus providing a research tool in this context and a candidate therapeutic agent for conditions linked to mitochondrial dysfunction
Benchmarking a highly selective USP30 inhibitor for enhancement of mitophagy and pexophagy
The deubiquitylase USP30 is an actionable target considered for treatment of conditions associated with defects in the PINK1-PRKN pathway leading to mitophagy. We provide a detailed cell biological characterization of a benzosulphonamide molecule, compound 39, that has previously been reported to inhibit USP30 in an in vitro enzymatic assay. The current compound offers increased selectivity over previously described inhibitors. It enhances mitophagy and generates a signature response for USP30 inhibition after mitochondrial depolarization. This includes enhancement of TOMM20 and SYNJ2BP ubiquitylation and phosphoubiquitin accumulation, alongside increased mitophagy. In dopaminergic neurons, generated from Parkinson disease patients carrying loss of function PRKN mutations, compound 39 could significantly restore mitophagy to a level approaching control values. USP30 is located on both mitochondria and peroxisomes and has also been linked to the PINK1-independent pexophagy pathway. Using a fluorescence reporter of pexophagy expressed in U2OS cells, we observe increased pexophagy upon application of compound 39 that recapitulates the previously described effect for USP30 depletion. This provides the first pharmacological intervention with a synthetic molecule to enhance peroxisome turnover
USP30 sets a trigger threshold for PINK1âPARKIN amplification of mitochondrial ubiquitylation
The mitochondrial deubiquitylase USP30 negatively regulates the selective autophagy of damaged mitochondria. We present the characterisation of an N-cyano pyrrolidine compound, FT3967385, with high selectivity for USP30. We demonstrate that ubiquitylation of TOM20, a component of the outer mitochondrial membrane import machinery, represents a robust biomarker for both USP30 loss and inhibition. A proteomics analysis, on a SHSY5Y neuroblastoma cell line model, directly compares the effects of genetic loss of USP30 with chemical inhibition. We have thereby identified a subset of ubiquitylation events consequent to mitochondrial depolarisation that are USP30 sensitive. Within responsive elements of the ubiquitylome, several components of the outer mitochondrial membrane transport (TOM) complex are prominent. Thus, our data support a model whereby USP30 can regulate the availability of ubiquitin at the specific site of mitochondrial PINK1 accumulation following membrane depolarisation. USP30 deubiquitylation of TOM complex components dampens the trigger for the Parkin-dependent amplification of mitochondrial ubiquitylation leading to mitophagy. Accordingly, PINK1 generation of phospho-Ser65 ubiquitin proceeds more rapidly in cells either lacking USP30 or subject to USP30 inhibition
Late Holocene Activity of Sherman and Sheridan Glaciers, Prince William Sound, Alaska
Two adjacent glaciers in the Chugach Mountains of south-central Alaska have markedly different histories on decadal to perhaps centennial timescales. Sheridan Glacier has advanced and retreated hundreds of metres during the latest Holocene. Its recent fluctuations have markedly altered local base level of Sherman River, which drains Sherman Glacier and flows into Sheridan Lake. Sheridan Glacier advanced to its greatest extent during the Little Ice Age, raising base level of Sherman River and inducing aggradation there of up to 17 m of sediment. Retreat of Sheridan Glacier formed a series of lakes that have coalesced. As lower lake outlets have become available, base level of Sherman River has dropped, resulting in the evacuation of substantial volumes of sediment from Sherman River valley. In about 2000, the terminus of Sheridan Glacier began to disintegrate; retreat accelerated dramatically in 2010. By 2016, the glacier had retreated an average of 600 m from its 2010 terminus, although some areas retreated up to 1.9 km and others did not retreat at all. Meanwhile, Sherman Glacier continued a slow advance initiated by a rock avalanche that blanketed much of its ablation area in the 1964 Alaska earthquake. © 2018 Elsevier Lt
The Parkinson's disease related mutant VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress
The identification of multiple genes linked to Parkinson's disease (PD) invites the question as to how they may co-operate. We have generated isogenic cell lines that inducibly express either wild-type or a mutant form of the retromer component VPS35 (D620N), which has been linked to PD. This has enabled us to test proposed effects of this mutation in a setting where the relative expression reflects the physiological occurrence. We confirm that this mutation compromises VPS35 association with the WASH complex, but find no defect in WASH recruitment to endosomes, nor in the distribution of lysosomal receptors, cation-independent mannose-6-phosphate receptor and Sortilin. We show VPS35 (D620N) enhances the activity of the Parkinsonâs associated kinase LRRK2 towards RAB12 under basal conditions. Furthermore, VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress resulting in enhanced phosphorylation of RABs 10 and 12. By comparing different types of endolysosomal stresses such as the ionophore nigericin and the membranolytic agent l-leucyl-l-leucine methyl ester, we are able to dissociate phospho-RAB accumulation from membrane rupture
Transatlantic distribution of the Alaskan White River Ash
Volcanic ash layers preserved within the geologic record represent precise time markers that correlate disparate depositional environments and enable the investigation of synchronous and/or asynchronous behaviors in Earth system and archaeological sciences. However, it is generally assumed that only exceptionally powerful events, such as supereruptions (~450 km3 of ejecta as dense-rock equivalent; recurrence interval of ~105 yr), distribute ash broadly enough to have an impact on human society, or allow us to address geologic, climatic, and cultural questions on an intercontinental scale. Here we use geochemical, age, and morphological evidence to show that the Alaskan White River Ash (eastern lobe; A.D. 833â850) correlates to the âAD860Bâ ash (A.D. 846â848) found in Greenland and northern Europe. These occurrences represent the distribution of an ash over 7000 km, linking marine, terrestrial, and ice-core records. Our results indicate that tephra from more moderate-size eruptions, with recurrence intervals of ~100 yr, can have substantially greater distributions than previously thought, with direct implications for volcanic dispersal studies, correlation of widely distributed proxy records, and volcanic hazard assessment
- âŠ