216 research outputs found

    Loop corrections for Kaluza-Klein AdS amplitudes

    Get PDF
    Recently we conjectured the four-point amplitude of graviton multiplets in AdS5×S5{\rm AdS}_5 \times {\rm S}^5 at one loop by exploiting the operator product expansion of N=4\mathcal{N}=4 super Yang-Mills theory. Here we give the first extension of those results to include Kaluza-Klein modes, obtaining the amplitude for two graviton multiplets and two states of the first KK mode. Our method again relies on resolving the large N degeneracy among a family of long double-trace operators, for which we obtain explicit formulas for the leading anomalous dimensions. Having constructed the one-loop amplitude we are able to obtain a formula for the one-loop corrections to the anomalous dimensions of all twist five double-trace operators.Comment: 37 pages. One ancillary file containing data on the correlator

    Urban Airborne Lead: X-Ray Absorption Spectroscopy Establishes Soil as Dominant Source

    Get PDF
    BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings

    Catheter ablation vs. thoracoscopic surgical ablation in long-standing persistent atrial fibrillation: CASA-AF randomized controlled trial.

    Get PDF
    AIMS: Long-standing persistent atrial fibrillation (LSPAF) is challenging to treat with suboptimal catheter ablation (CA) outcomes. Thoracoscopic surgical ablation (SA) has shown promising efficacy in atrial fibrillation (AF). This multicentre randomized controlled trial tested whether SA was superior to CA as the first interventional strategy in de novo LSPAF. METHODS AND RESULTS: We randomized 120 LSPAF patients to SA or CA. All patients underwent predetermined lesion sets and implantable loop recorder insertion. Primary outcome was single procedure freedom from AF/atrial tachycardia (AT) ≥30 s without anti-arrhythmic drugs at 12 months. Secondary outcomes included clinical success (≥75% reduction in AF/AT burden); procedure-related serious adverse events; changes in patients' symptoms and quality-of-life scores; and cost-effectiveness. At 12 months, freedom from AF/AT was recorded in 26% (14/54) of patients in SA vs. 28% (17/60) in the CA group [OR 1.128, 95% CI (0.46-2.83), P = 0.83]. Reduction in AF/AT burden ≥75% was recorded in 67% (36/54) vs. 77% (46/60) [OR 1.13, 95% CI (0.67-4.08), P = 0.3] in SA and CA groups, respectively. Procedure-related serious adverse events within 30 days of intervention were reported in 15% (8/55) of patients in SA vs. 10% (6/60) in CA, P = 0.46. One death was reported after SA. Improvements in AF symptoms were greater following CA. Over 12 months, SA was more expensive and provided fewer quality-adjusted life-years (QALYs) compared with CA (0.78 vs. 0.85, P = 0.02). CONCLUSION: Single procedure thoracoscopic SA is not superior to CA in treating LSPAF. Catheter ablation provided greater improvements in symptoms and accrued significantly more QALYs during follow-up than SA. CLINICAL TRIAL REGISTRATION: ISRCTN18250790 and ClinicalTrials.gov: NCT02755688

    An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex

    Get PDF
    The North American Ice Sheet Complex (NAISC; consisting of the Laurentide, Cordilleran and Innuitian ice sheets) was the largest ice mass to repeatedly grow and decay in the Northern Hemisphere during the Quaternary. Understanding its pattern of retreat following the Last Glacial Maximum is critical for studying many facets of the Late Quaternary, including ice sheet behaviour, the evolution of Holocene landscapes, sea level, atmospheric circulation, and the peopling of the Americas. Currently, the most up-to-date and authoritative margin chronology for the entire ice sheet complex is featured in two publications (Geological Survey of Canada Open File 1574 [Dyke et al., 2003]; ‘Quaternary Glaciations – Extent and Chronology, Part II’ [Dyke, 2004]). These often-cited datasets track ice margin recession in 36 time slices spanning 18 ka to 1 ka (all ages in uncalibrated radiocarbon years) using a combination of geomorphology, stratigraphy and radiocarbon dating. However, by virtue of being over 15 years old, the ice margin chronology requires updating to reflect new work and important revisions. This paper updates the aforementioned 36 ice margin maps to reflect new data from regional studies. We also update the original radiocarbon dataset from the 2003/2004 papers with 1541 new ages to reflect work up to and including 2018. A major revision is made to the 18 ka ice margin, where Banks and Eglinton islands (once considered to be glacial refugia) are now shown to be fully glaciated. Our updated 18 ka ice sheet increased in areal extent from 17.81 to 18.37 million km2, which is an increase of 3.1% in spatial coverage of the NAISC at that time. Elsewhere, we also summarize, region-by-region, significant changes to the deglaciation sequence. This paper integrates new information provided by regional experts and radiocarbon data into the deglaciation sequence while maintaining consistency with the original ice margin positions of Dyke et al. (2003) and Dyke (2004) where new information is lacking; this is a pragmatic solution to satisfy the needs of a Quaternary research community that requires up-to-date knowledge of the pattern of ice margin recession of what was once the world’s largest ice mass. The 36 updated isochrones are available in PDF and shapefile format, together with a spreadsheet of the expanded radiocarbon dataset (n = 5195 ages) and estimates of uncertainty for each interval
    corecore