26 research outputs found

    Diversification as a Strategy: A Research-Based Plan for Arts Organizations to Cultivate New Audiences

    Get PDF
    Building a more inclusive audience is not a far-fetched idea; system diversification by its very nature is a performance strategy, not a performance goal. Changing audience demographics requires well laid out plans, achievable goals, effective processes, and a total organizational commitment to diversification. This report was created to provide perspectives that inform executive leaders in arts organizations who plan to attract diverse audiences. It highlights nine research-based recommendations for audience diversification. The report is unique in that it layers four approaches that, if used simultaneously, have the potential to both increase the likelihood of success and decrease the amount of time it will take to achieve results by framing audience diversification as a strategy, not a goal

    Diversification as a Strategy: A Research-Based Plan to Cultivate New Audiences at the Richmond Symphony

    Get PDF
    Building a more inclusive audience is not a far-fetched idea; system diversification by its very nature is a performance strategy, not a performance goal. Changing audience demographics requires well laid out plans, achievable goals, effective processes, and a total organizational commitment to diversification. This report was created to provide perspectives that inform executive leaders in arts organizations who plan to attract diverse audiences. It highlights nine research-based recommendations for audience diversification. Our report is unique in that it layers four approaches that, if used simultaneously, have the potential to both increase the likelihood of success and decrease the amount of time it will take to achieve results by framing audience diversification as a strategy, not a goal

    Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m

    Get PDF
    Upon ascent to high altitude, cerebral blood flow (CBF) rises substantially before returning to sea-level values. The underlying mechanisms for these changes are unclear. We examined three hypotheses: (1) the balance of arterial blood gases upon arrival at and across 2 weeks of living at 5050 m will closely relate to changes in CBF; (2) CBF reactivity to steady-state changes in CO2 will be reduced following this 2 week acclimatisation period, and (3) reductions in CBF reactivity to CO2 will be reflected in an augmented ventilatory sensitivity to CO2. We measured arterial blood gases, middle cerebral artery blood flow velocity (MCAv, index of CBF) and ventilation () at rest and during steady-state hyperoxic hypercapnia (7% CO2) and voluntary hyperventilation (hypocapnia) at sea level and then again following 2–4, 7–9 and 12–15 days of living at 5050 m. Upon arrival at high altitude, resting MCAv was elevated (up 31 ± 31%; P < 0.01; vs. sea level), but returned to sea-level values within 7–9 days. Elevations in MCAv were strongly correlated (R2= 0.40) with the change in ratio (i.e. the collective tendency of arterial blood gases to cause CBF vasodilatation or constriction). Upon initial arrival and after 2 weeks at high altitude, cerebrovascular reactivity to hypercapnia was reduced (P < 0.05), whereas hypocapnic reactivity was enhanced (P < 0.05 vs. sea level). Ventilatory response to hypercapnia was elevated at days 2–4 (P < 0.05 vs. sea level, 4.01 ± 2.98 vs. 2.09 ± 1.32 l min−1 mmHg−1). These findings indicate that: (1) the balance of arterial blood gases accounts for a large part of the observed variability (∼40%) leading to changes in CBF at high altitude; (2) cerebrovascular reactivity to hypercapnia and hypocapnia is differentially affected by high-altitude exposure and remains distorted during partial acclimatisation, and (3) alterations in cerebrovascular reactivity to CO2 may also affect ventilatory sensitivity

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2

    No full text
    An altered acid–base balance following ascent to high altitude has been well established. Such changes in pH buffering could potentially account for the observed increase in ventilatory CO2 sensitivity at high altitude. Likewise, if [H+] is the main determinant of cerebrovascular tone, then an alteration in pH buffering may also enhance the cerebral blood flow (CBF) responsiveness to CO2 (termed cerebrovascular CO2 reactivity). However, the effect altered acid–base balance associated with high altitude ascent on cerebrovascular and ventilatory responsiveness to CO2 remains unclear. We measured ventilation , middle cerebral artery velocity (MCAv; index of CBF) and arterial blood gases at sea level and following ascent to 5050 m in 17 healthy participants during modified hyperoxic rebreathing. At 5050 m, resting , MCAv and pH were higher (P < 0.01), while bicarbonate concentration and partial pressures of arterial O2 and CO2 were lower (P < 0.01) compared to sea level. Ascent to 5050 m also increased the hypercapnic MCAv CO2 reactivity (2.9 ± 1.1 vs. 4.8 ± 1.4% mmHg−1; P < 0.01) and CO2 sensitivity (3.6 ± 2.3 vs. 5.1 ± 1.7 l min−1 mmHg−1; P < 0.01). Likewise, the hypocapnic MCAv CO2 reactivity was increased at 5050 m (4.2 ± 1.0 vs. 2.0 ± 0.6% mmHg−1; P < 0.01). The hypercapnic MCAv CO2 reactivity correlated with resting pH at high altitude (R2= 0.4; P < 0.01) while the central chemoreflex threshold correlated with bicarbonate concentration (R2= 0.7; P < 0.01). These findings indicate that (1) ascent to high altitude increases the ventilatory CO2 sensitivity and elevates the cerebrovascular responsiveness to hypercapnia and hypocapnia, and (2) alterations in cerebrovascular CO2 reactivity and central chemoreflex may be partly attributed to an acid–base balance associated with high altitude ascent. Collectively, our findings provide new insights into the influence of high altitude on cerebrovascular function and highlight the potential role of alterations in acid–base balance in the regulation in CBF and ventilatory control

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore