1,260 research outputs found

    Massive spin 2 propagator on de Sitter space

    Full text link
    We compute the Pauli-Jordan, Hadamard and Feynman propagators for the massive metrical perturbations on de Sitter space. They are expressed both in terms of mode sums and in invariant forms.Comment: 30 pages + 1 eps fi

    Predictors of walking capacity in peripheral arterial disease patients

    Get PDF
    OBJECTIVE: To estimate walking capacity in intermittent claudication patients through a prediction model based on clinical characteristics and the walking impairment questionnaire. METHODS: The sample included 133 intermittent claudication patients of both genders aged between 30 and 80 years. Data regarding clinical characteristics, the walking impairment questionnaire and treadmill walking test performance were obtained. Multiple regression modeling was conducted to predict claudication onset distance and total walking distance using clinical characteristics (age, height, mass, body mass index, ankle brachial index lower, gender, history of smoking and co-morbid conditions) and walking impairment questionnaire responses. Comparisons of claudication onset distance and total walking distance measured during treadmill tests and estimated by a regression equation were performed using paired t-tests. RESULTS: Co-morbid conditions (diabetes and coronary artery disease) and questions related to difficulty in walking short distances (walking indoors - such as around your house and walking 5 blocks) and at low speed (walking 1 block at average speed - usual pace) resulted in the development of new prediction models high significant for claudication onset distance and total walking distance (p0.05) were observed. CONCLUSION: The current study demonstrated that walking capacity can be adequately estimated based on co-morbid conditions and responses to the walking impairment questionnaire

    Chiral supersymmetric pp-wave solutions of IIA supergravity

    Get PDF
    We describe solutions of type IIA (N=2, D=10) supergravity built under the assumption of the existence of at least one residual chiral supersymmetry. Their geometry is of pp-wave type. Explicit parametrization of the metric and matter field components, in terms of Killing spinors and arbitrary functions, is provided.Comment: LaTeX file, 10 page

    Quantum charged fields in Rindler space

    Full text link
    We study, using Rindler coordinates, the quantization of a charged scalar field interacting with a constant, external, electric field. First we establish the expression of the Schwinger vacuum decay rate, using the operator formalism. Then we rederive it in the framework of the Feynman path integral method. Our analysis reinforces the conjecture which identifies the zero winding sector of the Minkowski propagator with the Rindler propagator. Moreover we compute the expression of the Unruh's modes that allow to make connection between Minkowskian and Rindlerian quantization scheme by purely algebraic relations. We use these modes to study the physics of a charged two level detector moving in an electric field whose transitions are due to the exchange of charged quanta. In the limit where the Schwinger pair production mechanism of the exchanged quanta becomes negligible we recover the Boltzman equilibrium ratio for the population of the levels of the detector. Finally we explicitly show how the detector can be taken as the large mass and charge limit of an interacting fields system.Comment: 1 Tex file + 5 eps figure

    Mimimal Length Uncertainty Principle and the Transplanckian Problem of Black Hole Physics

    Get PDF
    The minimal length uncertainty principle of Kempf, Mangano and Mann (KMM), as derived from a mutilated quantum commutator between coordinate and momentum, is applied to describe the modes and wave packets of Hawking particles evaporated from a black hole. The transplanckian problem is successfully confronted in that the Hawking particle no longer hugs the horizon at arbitrarily close distances. Rather the mode of Schwarzschild frequency ω\omega deviates from the conventional trajectory when the coordinate rr is given by r2MβHω/2π| r - 2M|\simeq \beta_H \omega / 2 \pi in units of the non local distance legislated into the uncertainty relation. Wave packets straddle the horizon and spread out to fill the whole non local region. The charge carried by the packet (in the sense of the amount of "stuff" carried by the Klein--Gordon field) is not conserved in the non--local region and rapidly decreases to zero as time decreases. Read in the forward temporal direction, the non--local region thus is the seat of production of the Hawking particle and its partner. The KMM model was inspired by string theory for which the mutilated commutator has been proposed to describe an effective theory of high momentum scattering of zero mass modes. It is here interpreted in terms of dissipation which gives rise to the Hawking particle into a reservoir of other modes (of as yet unknown origin). On this basis it is conjectured that the Bekenstein--Hawking entropy finds its origin in the fluctuations of fields extending over the non local region.Comment: 12 pages (LateX), 1 figur

    Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect

    Full text link
    We present a stochastic theory for the nonequilibrium dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle's worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.Comment: Invited talk given by BLH at the International Assembly on Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1 figur

    Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping

    Get PDF
    Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al

    Boundary conditions in the Unruh problem

    Get PDF
    We have analyzed the Unruh problem in the frame of quantum field theory and have shown that the Unruh quantization scheme is valid in the double Rindler wedge rather than in Minkowski spacetime. The double Rindler wedge is composed of two disjoint regions (RR- and LL-wedges of Minkowski spacetime) which are causally separated from each other. Moreover the Unruh construction implies existence of boundary condition at the common edge of RR- and LL-wedges in Minkowski spacetime. Such boundary condition may be interpreted as a topological obstacle which gives rise to a superselection rule prohibiting any correlations between rr- and ll- Unruh particles. Thus the part of the field from the LL-wedge in no way can influence a Rindler observer living in the RR-wedge and therefore elimination of the invisible "left" degrees of freedom will take no effect for him. Hence averaging over states of the field in one wedge can not lead to thermalization of the state in the other. This result is proved both in the standard and algebraic formulations of quantum field theory and we conclude that principles of quantum field theory does not give any grounds for existence of the "Unruh effect".Comment: 31 pages,1 figur
    corecore