20 research outputs found

    Genome Expression Dynamics Reveal the Parasitism Regulatory Landscape of the Root-Knot Nematode Meloidogyne incognita and a Promoter Motif Associated with Effector Genes.

    Get PDF
    Root-knot nematodes (genus Meloidogyne) are the major contributor to crop losses caused by nematodes. These nematodes secrete effector proteins into the plant, derived from two sets of pharyngeal gland cells, to manipulate host physiology and immunity. Successful completion of the life cycle, involving successive molts from egg to adult, covers morphologically and functionally distinct stages and will require precise control of gene expression, including effector genes. The details of how root-knot nematodes regulate transcription remain sparse. Here, we report a life stage-specific transcriptome of Meloidogyne incognita. Combined with an available annotated genome, we explore the spatio-temporal regulation of gene expression. We reveal gene expression clusters and predicted functions that accompany the major developmental transitions. Focusing on effectors, we identify a putative cis-regulatory motif associated with expression in the dorsal glands, providing an insight into effector regulation. We combine the presence of this motif with several other criteria to predict a novel set of putative dorsal gland effectors. Finally, we show this motif, and thereby its utility, is broadly conserved across the Meloidogyne genus, and we name it Mel-DOG. Taken together, we provide the first genome-wide analysis of spatio-temporal gene expression in a root-knot nematode and identify a new set of candidate effector genes that will guide future functional analyses

    Analysis of effector proteins from the ectomycorrhizal fungus Laccaria bicolor : bioinformatic and functional analysis

    No full text
    La symbiose ectomycorhizienne associe les racines d’un arbre aux hyphes d’un champignon, conduisant Ă  un Ă©change rĂ©ciproque de nutriments entre les deux partenaires. La colonisation fongique massive du cortex racinaire est caractĂ©risĂ©e par la formation d’une interface symbiotique, le rĂ©seau de Hartig. L’acquisition du gĂ©nome du symbionte ectomycorhizien Laccaria bicolor a permis d’identifier des petites protĂ©ines prĂ©dites sĂ©crĂ©tĂ©es, les MiSSPs (Mycorrhiza-induced Small Secreted Proteins). Mon projet de thĂšse avait pour objectifs la comparaison des sĂ©crĂ©tomes, notamment les petites protĂ©ines sĂ©crĂ©tĂ©es (SSPs), de champignons ectomycorhiziens et saprotrophes, la localisation subcellulaire in planta et l’analyse fonctionnelle de MiSSPs de L. bicolor. L’analyse bioinformatique a notamment permis de rĂ©vĂ©ler des clusters de SSPs conservĂ©es entre champignons ectomycorhiziens et saprotrophes ou spĂ©cifiques de champignons ectomycorhiziens, mettant en lumiĂšre que les champignons ectomycorhiziens partagent des SSPs avec leurs ancĂȘtres saprotrophes mais possĂšdent aussi d’autres SSPs spĂ©cifiques Ă  leur mode de vie. Un jeu de MiSSPs de L. bicolor ont Ă©tĂ© localisĂ©es in planta. Trois d’entre eux ciblent spĂ©cifiquement des compartiments subcellulaires de la cellule vĂ©gĂ©tale. Le motif rĂ©pĂ©tĂ© DWRR prĂ©sent dans la sĂ©quence de MiSSP8 est partagĂ© par une famille de protĂ©ine fongique de champignons majoritairement saprotrophes. Ces rĂ©sultats suggĂšrent que l’utilisation de SSPs comme moyen de communication est gĂ©nĂ©rique chez les champignons et dĂ©montrent aussi qu’au moins une petite protĂ©ine sĂ©crĂ©tĂ©e requise pour la symbiose de L. bicolor a Ă©voluĂ©e Ă  partir de protĂ©ines de champignons saprotrophesRoots of most trees form ectomycorrhizal (ECM) symbiosis with mutualistic soil-borne fungi, relying on a bi-directional exchange of nutrients between the two partners. Fungal colonization of cortical root cells form the Hartig net, a symbiotic interface. Functioning of this symbiotic interface is not well known. However, Laccaria bicolor genome sequencing sheds the light on upregulated small-secreted proteins, so-called MiSSPs (Mycorrhiza-Small Secreted Proteins). Several L. bicolor MiSSPs were demonstrated as symbiosis effectors. My PhD project aims to compare secretomes, in particular SSPs, of fungal with different lifestyles and pursue functional analysis of MiSSPs of L. bicolor. Based on the clustering analysis, we identified clusters of SSPs shared between saprotrophic and ECM fungi and clusters of SSPs specific to ECM-fungi. This study highlights that ECM fungi share SSPs with their saprotrophic ancestors but also possess lifestyle specific SSPs. In planta subcellular localization of a set of MiSSPs belonging to a core-regulon showed that three of them are able to target different plant subcellular compartments. Functional analysis of the symbiosis effector MiSSP8 does not lead to the identification of a putative interactor but the repetitive motif DWRR of MiSSP8 protein sequence is unique to fungi and is shared with SSPs from saprotrophic ancestors. Our results suggest the use of SSPs as mean of communication is common and generic and show at least one SSPs required for ectomycorhizal symbiosis of L. bicolor has evolved from SSPs found in saprotrophic fung

    Analyse d’effecteurs du champignon ectomycorhizien Laccaria bicolor : approches bio-informatiques et fonctionnelles

    No full text
    Roots of most trees form ectomycorrhizal (ECM) symbiosis with mutualistic soil-borne fungi, relying on a bi-directional exchange of nutrients between the two partners. Fungal colonization of cortical root cells form the Hartig net, a symbiotic interface. Functioning of this symbiotic interface is not well known. However, Laccaria bicolor genome sequencing sheds the light on upregulated small-secreted proteins, so-called MiSSPs (Mycorrhiza-Small Secreted Proteins). Several L. bicolor MiSSPs were demonstrated as symbiosis effectors. My PhD project aims to compare secretomes, in particular SSPs, of fungal with different lifestyles and pursue functional analysis of MiSSPs of L. bicolor. Based on the clustering analysis, we identified clusters of SSPs shared between saprotrophic and ECM fungi and clusters of SSPs specific to ECM-fungi. This study highlights that ECM fungi share SSPs with their saprotrophic ancestors but also possess lifestyle specific SSPs. In planta subcellular localization of a set of MiSSPs belonging to a core-regulon showed that three of them are able to target different plant subcellular compartments. Functional analysis of the symbiosis effector MiSSP8 does not lead to the identification of a putative interactor but the repetitive motif DWRR of MiSSP8 protein sequence is unique to fungi and is shared with SSPs from saprotrophic ancestors. Our results suggest the use of SSPs as mean of communication is common and generic and show at least one SSPs required for ectomycorhizal symbiosis of L. bicolor has evolved from SSPs found in saprotrophic fungiLa symbiose ectomycorhizienne associe les racines d’un arbre aux hyphes d’un champignon, conduisant Ă  un Ă©change rĂ©ciproque de nutriments entre les deux partenaires. La colonisation fongique massive du cortex racinaire est caractĂ©risĂ©e par la formation d’une interface symbiotique, le rĂ©seau de Hartig. L’acquisition du gĂ©nome du symbionte ectomycorhizien Laccaria bicolor a permis d’identifier des petites protĂ©ines prĂ©dites sĂ©crĂ©tĂ©es, les MiSSPs (Mycorrhiza-induced Small Secreted Proteins). Mon projet de thĂšse avait pour objectifs la comparaison des sĂ©crĂ©tomes, notamment les petites protĂ©ines sĂ©crĂ©tĂ©es (SSPs), de champignons ectomycorhiziens et saprotrophes, la localisation subcellulaire in planta et l’analyse fonctionnelle de MiSSPs de L. bicolor. L’analyse bioinformatique a notamment permis de rĂ©vĂ©ler des clusters de SSPs conservĂ©es entre champignons ectomycorhiziens et saprotrophes ou spĂ©cifiques de champignons ectomycorhiziens, mettant en lumiĂšre que les champignons ectomycorhiziens partagent des SSPs avec leurs ancĂȘtres saprotrophes mais possĂšdent aussi d’autres SSPs spĂ©cifiques Ă  leur mode de vie. Un jeu de MiSSPs de L. bicolor ont Ă©tĂ© localisĂ©es in planta. Trois d’entre eux ciblent spĂ©cifiquement des compartiments subcellulaires de la cellule vĂ©gĂ©tale. Le motif rĂ©pĂ©tĂ© DWRR prĂ©sent dans la sĂ©quence de MiSSP8 est partagĂ© par une famille de protĂ©ine fongique de champignons majoritairement saprotrophes. Ces rĂ©sultats suggĂšrent que l’utilisation de SSPs comme moyen de communication est gĂ©nĂ©rique chez les champignons et dĂ©montrent aussi qu’au moins une petite protĂ©ine sĂ©crĂ©tĂ©e requise pour la symbiose de L. bicolor a Ă©voluĂ©e Ă  partir de protĂ©ines de champignons saprotrophe

    A Versatile Dual Grid-type Beam Scanner

    No full text

    Laccaria bicolor MiSSP8 is a small-secreted protein decisive for the establishment of the ectomycorrhizal symbiosis

    No full text
    The ectomycorrhizal symbiosis is a predominant tree–microbe interaction in forest ecosystems sustaining tree growth and health. Its establishment and functioning implies a long‐term and intimate relationship between the soil‐borne fungi and the roots of trees. Mycorrhiza‐induced Small‐Secreted Proteins (MiSSPs) are hypothesized as keystone symbiotic proteins, required to set up the symbiosis by modifying the host metabolism and/or building the symbiotic interfaces. L. bicolor MiSSP8 is the third most highly induced MiSSPs in symbiotic tissues and it is also expressed in fruiting bodies. The MiSSP8‐RNAi knockdown mutants are strongly impaired in their mycorrhization ability with Populus, with the lack of fungal mantle and Hartig net development due to the lack of hyphal aggregation. MiSSP8 C‐terminus displays a repetitive motif containing a kexin cleavage site, recognized by KEX2 in vitro. This suggests MiSSP8 protein might be cleaved into small peptides. Moreover, the MiSSP8 repetitive motif is found in other proteins predicted secreted by both saprotrophic and ectomycorrhizal fungi. Thus, our data indicate that MiSSP8 is a small‐secreted protein involved at early stages of ectomycorrhizal symbiosis, likely by regulating hyphal aggregation and pseudoparenchyma formation.Fil: Pellegrin, ClĂ©ment. universitĂ© de Lorraine; FranciaFil: Pellegrin, ClĂ©ment.Fil: Ruytinx, Joske.Fil: Guinet, FrĂ©dĂ©ric.Fil: Kemppainen, Minna.Fil: Frei dit Frey, Nicolas.Fil: Puech PagĂšs, Virginie.Fil: Hecker, Arnaud.Fil: Pardo, Alejandro Guillermo. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a. Laboratorio de MicologĂ­a Molecular; ArgentinaFil: Martin, Francis M..Fil: Veneault Fourrey, Claire
    corecore