72 research outputs found

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    Evolution from XIST-Independent to XIST-Controlled X-Chromosome Inactivation: Epigenetic Modifications in Distantly Related Mammals

    Get PDF
    X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI

    Highly Parallel Genome-Wide Expression Analysis of Single Mammalian Cells

    Get PDF
    We have developed a high-throughput amplification method for generating robust gene expression profiles using single cell or low RNA inputs.The method uses tagged priming and template-switching, resulting in the incorporation of universal PCR priming sites at both ends of the synthesized cDNA for global PCR amplification. Coupled with a whole-genome gene expression microarray platform, we routinely obtain expression correlation values of R(2)~0.76-0.80 between individual cells and R(2)~0.69 between 50 pg total RNA replicates. Expression profiles generated from single cells or 50 pg total RNA correlate well with that generated with higher input (1 ng total RNA) (R(2)~0.80). Also, the assay is sufficiently sensitive to detect, in a single cell, approximately 63% of the number of genes detected with 1 ng input, with approximately 97% of the genes detected in the single-cell input also detected in the higher input.In summary, our method facilitates whole-genome gene expression profiling in contexts where starting material is extremely limiting, particularly in areas such as the study of progenitor cells in early development and tumor stem cell biology

    Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors

    Get PDF
    BACKGROUND: Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce. RESULTS: We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features. CONCLUSIONS: These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.This work was supported by the Gatsby Charitable Foundation (RG62472), by the Royal Society (RG69135) and by the European Research Council (ERC-2014-STG, H2020, 637537)

    Synchronous photoinitiation of endothelial NO synthase activity by a nanotrigger targeted as its NADPH site

    No full text
    International audienceWe designed a new nanotrigger to synchronize and monitor an enzymatic activity interacting specifically with the conserved NADPH binding site. The nanotrigger (NT) combines a docking moiety targeting the NADPH site and a chromophore moiety responsive to light excitation for efficient electron transfer to the protein. Specific binding of the nanotrigger to the reductase domain of the endothelial nitric oxide synthase (eNOSred) was demonstrated by competition between NADPH and the nanotrigger on the reduction of eNOSred flavin. A micromolar Ki was estimated. We had monitored initiation of eNOSred activity by ultrafast transient spectroscopy. The transient absorption spectrum recorded at 250 ps fits the expected sum of the reduced and oxidized species, independently obtained by other chemical methods, in agreement with a photoinduced electron transfer from the excited nanotrigger to the flavin moiety of eNOSred. The rate of electron transfer from the excited state of the nanotrigger (NT*) to the protein is estimated to be kET = (7 ± 2) × 109 s-1 using the decay of oxidized eNOSred-bound nanotrigger compared against prereduced eNOSred or glucose 6-P dehydrogenase as controls. This fast electron transfer bypasses the slow hydride transfer to initiate NOS catalysis as shown by ultrafast kinetics using the eNOSred mutated in the regulatory F1160 residue. The selective targeting of the nanotrigger to NADPH sites should allow controlled initiation of the enzymatic activity of numerous proteins containing an NADPH site
    • …
    corecore