1,949 research outputs found

    Bifurcation-based parameter tuning in a model of the GnRH pulse and surge generator

    Get PDF
    We investigate a model of the GnRH pulse and surge generator, with the definite aim of constraining the model GnRH output with respect to a physiologically relevant list of specifications. The alternating pulse and surge pattern of secretion results from the interaction between a GnRH secreting system and a regulating system exhibiting fast-slow dynamics. The mechanisms underlying the behavior of the model are reminded from the study of the Boundary-Layer System according to the "dissection method" principle. Using singular perturbation theory, we describe the sequence of bifurcations undergone by the regulating (FitzHugh-Nagumo) system, encompassing the rarely investigated case of homoclinic connexion. Basing on pure dynamical considerations, we restrict the space of parameter search for the regulating system and describe a foliation of this restricted space, whose leaves define constant duration ratios between the surge and the pulsatility phase in the whole system. We propose an algorithm to fix the parameter values to also meet the other prescribed ratios dealing with amplitude and frequency features of the secretion signal. We finally apply these results to illustrate the dynamics of GnRH secretion in the ovine species and the rhesus monkey

    Frequency stability of a wavelength meter and applications to laser frequency stabilization

    Full text link
    Interferometric wavelength meters have attained frequency resolutions down to the MHz range. In particular, Fizeau interferometers, which have no moving parts, are becoming a popular tool for laser characterization and stabilization. In this article, we characterize such a wavelength meter using an ultra-stable laser in terms of relative frequency instability σy(τ)\sigma_y(\tau) and demonstrate that it can achieve a short-term instability σy(1s)≈2×10−10\sigma_y(1 s) \approx 2{\times}10^{-10} and a frequency drift of order 1010 MHz/day. We use this apparatus to demonstrate frequency control of a near-infrared laser, where a frequency instability below 3×10−103{\times}10^{-10} from 1 s to 2000 s is achieved. Such performance is for example adequate for ions trapping and atoms cooling experiments.Comment: 5 pages, 4 figure

    PBS-Calculus: A Graphical Language for Coherent Control of Quantum Computations

    Full text link
    We introduce the PBS-calculus to represent and reason on quantum computations involving coherent control of quantum operations. Coherent control, and in particular indefinite causal order, is known to enable multiple computational and communication advantages over classically ordered models like quantum circuits. The PBS-calculus is inspired by quantum optics, in particular the polarising beam splitter (PBS for short). We formalise the syntax and the semantics of the PBS-diagrams, and we equip the language with an equational theory, which is proved to be sound and complete: two diagrams are representing the same quantum evolution if and only if one can be transformed into the other using the rules of the PBS-calculus. Moreover, we show that the equational theory is minimal. Finally, we consider applications like the implementation of controlled permutations and the unrolling of loops.Comment: 55 pages. This is the full version of a paper published at MFCS'2

    An anticipative kinematic limitation avoidance algorithm for collaborative robots : two-dimensional case

    Get PDF
    This paper presents an anticipative robot kinematic limitation avoidance algorithm for collaborative robots. The main objective is to improve the performance and the intuitivity of physical human-robot interaction. Currently, in such interactions, the human user must focus on the task as well as on the robot configuration. Indeed, the user must pay a close attention to the robot in order to avoid limitations such as joint position limitations, singularities and collisions with the environment. The proposed anticipative algorithm aims at relieving the human user from having to deal with such limitations by automatically avoiding them while considering the user's intentions. The framework developed to manage several limitations occurring simultaneously in three-dimensional space is first presented. The algorithm is then presented and detailed for each individual limitation of a spatial RRR serial robot. Finally, experiments are performed in order to assess the performance of the algorithm

    New concepts of inertial measurements with multi-species atom interferometry

    Full text link
    In the field of cold atom inertial sensors, we present and analyze innovative configurations for improving their measurement range and sensitivity, especially attracting for onboard applications. These configurations rely on multi-species atom interferometry, involving the simultaneous manipulation of different atomic species in a unique instrument to deduce inertial measurements. Using a dual-species atom accelerometer manipulating simultaneously both isotopes of rubidium, we report a preliminary experimental realization of original concepts involving the implementation of two atom interferometers first with different interrogation times and secondly in phase quadrature. These results open the door to a new generation of atomic sensors relying on high performance multi-species atom interferometric measurements

    Risk assessment based on performantial criterion for inspection of offshore structures in presence of large cracks

    Get PDF
    International audienceWhen performing risk analysis, it is often uneasy to find the link between limit state and consequences. This paper focuses on efficiency based limit states in case of large cracks on offshore structures. Randomness and uncertainties on loading as well as on crack measurement and detection are introduced.Les analyses de risque sont souvent dĂ©licates par manque de lien direct entre la fonction d’état et les consĂ©quences. Cet article propose des fonctions d’état de type performantiel (dĂ©placement) dans le cas d’apparitions de fissures traversantes dans des tubes mĂ©talliques de structures offshore. Les alĂ©as sur le chargement, la mesure de la fissure et la performance des inspections sont intĂ©grĂ©s dans l’analyse de risque

    Minimal Equational Theories for Quantum Circuits

    Full text link
    We introduce the first minimal and complete equational theory for quantum circuits. Hence, we show that any true equation on quantum circuits can be derived from simple rules, all of them being standard except a novel but intuitive one which states that a multi-control 2π2\pi rotation is nothing but the identity. Our work improves on the recent complete equational theories for quantum circuits, by getting rid of several rules including a fairly unpractical one. One of our main contributions is to prove the minimality of the equational theory, i.e. none of the rules can be derived from the other ones. More generally, we demonstrate that any complete equational theory on quantum circuits (when all gates are unitary) requires rules acting on an unbounded number of qubits. Finally, we also simplify the complete equational theories for quantum circuits with ancillary qubits and/or qubit discarding

    An anticipative kinematic limitation avoidance algorithm for collaborative robots : Three-dimensional case

    Get PDF
    This paper presents an anticipative robot kinematic limitation avoidance algorithm for collaborative robots. The main objective is to improve the performance and the intuitivity of physical human-robot interaction. Currently, in such interactions, the human user must focus on the task as well as on the robot configuration. Indeed, the user must pay a close attention to the robot in order to avoid limitations such as joint position limitations, singularities and collisions with the environment. The proposed anticipative algorithm aims at relieving the human user from having to deal with such limitations by automatically avoiding them while considering the user's intentions. The framework developed to manage several limitations occurring simultaneously in three-dimensional space is first presented. The algorithm is then presented and detailed for each individual limitation of a spatial RRR serial robot. Finally, experiments are performed in order to assess the performance of the algorithm

    Nanometer-scale absolute laser ranging: exploiting a two-mode interference signal for high accuracy distance measurements

    Get PDF
    International audienceAbsolute distance measurement with accuracy below the micron scale is important in astronomical optical interferometry. We present here an absolute laser rangefinder which relies on the detection of a two mode interference signal. We exploit the specific signature of the signal to extract both the interferometric and synthetic phase measurements, leading to distance measurement with nanometric accuracy. A resolution of 100 pm has been achieved in 75 ÎŒs with a relatively simple laser source. Amplitude to phase coupling in the detection chains turns out to be the largest source of systematic errors. A specific detection scheme is implemented, using optical demodulation of the microwave optical signal, to reduce amplitude-to-phase related systematic errors to below the required level

    Quantum Circuit Completeness: Extensions and Simplifications

    Full text link
    Although quantum circuits have been ubiquitous for decades in quantum computing, the first complete equational theory for quantum circuits has only recently been introduced. Completeness guarantees that any true equation on quantum circuits can be derived from the equational theory. We improve this completeness result in two ways: (i) We simplify the equational theory by proving that several rules can be derived from the remaining ones. In particular, two out of the three most intricate rules are removed, the third one being slightly simplified. (ii) The complete equational theory can be extended to quantum circuits with ancillae or qubit discarding, to represent respectively quantum computations using an additional workspace, and hybrid quantum computations. We show that the remaining intricate rule can be greatly simplified in these more expressive settings, leading to equational theories where all equations act on a bounded number of qubits. The development of simple and complete equational theories for expressive quantum circuit models opens new avenues for reasoning about quantum circuits. It provides strong formal foundations for various compiling tasks such as circuit optimisation, hardware constraint satisfaction and verification
    • 

    corecore