3,505 research outputs found

    Polyether from a biobased Janus molecule as surfactant for carbon nanotubes

    Get PDF
    A new polyether (PE) was prepared from a biobased Janus molecule, 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3- propanediol (serinol pyrrole, SP). SP was synthesized with very high yield (about 96%) and high atom efficiency (about 80%) by reacting a biosourced molecule, such as serinol, with 2,5-hexanedione in the absence of solvent or catalyst. The reaction of SP with 1,6-dibromohexane led to PE oligomers, that were used as surfactants for multiwalled carbon nanotubes (MWCNT), in ecofriendly polar solvents such as acetone and ethyl acetate. The synergic interaction of aromatic rings and oxyalkylene sequences with the carbon allotrope led to dramatic improvement of surfactant efficiency: only 24% of SP based PE was extracted with ethyl acetate from the adduct with MWCNT, versus 98% of a typical pluronic surfactant. Suspensions of MWCNT-PE adducts in ethyl acetate were stable for months. High resolution transmission electron microscopy revealed a film of oligomers tightly adhered to MWCNT surface

    Redshift determination in the X-ray band of gamma-ray bursts

    Full text link
    If gamma-ray bursts originate in dense stellar forming regions, the interstellar material can imprint detectable absorption features on the observed X-ray spectrum. Such features can be detected by existing and planned X-ray satellites, as long as the X-ray afterglow is observed after a few minutes from the burst. If the column density of the interstellar material exceeds ~10^{23} cm^{-2} there exists the possibility to detect the K_alpha fluorescent iron line, which should be visible for more than one year, long after the X-ray afterglow continuum has faded away. Detection of these X-ray features will make possible the determination of the redshift of gamma-ray bursts even when their optical afterglow is severely dimmed by extinction.Comment: 15 pages with 5 figures. Submitted to Ap

    The artificial retina for track reconstruction at the LHC crossing rate

    Full text link
    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz40\,\rm MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.Comment: 3 pages, 3 figures, ICHEP14. arXiv admin note: text overlap with arXiv:1409.089

    Simulation and performance of an artificial retina for 40 MHz track reconstruction

    Get PDF
    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz40\,\rm MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.Comment: Final draft of WIT proceedings modified according to JINST referee's comment

    Cone-beam computed tomography accuracy in pulp chamber size evaluation: An ex vivo study

    Get PDF
    This study aimed to assess ex vivo the accuracy of cone-beam computed tomography (CBCT), as compared to operative microscope, for evaluating pulp chamber size. A total of forty teeth were extracted for periodontal reasons and a horizontal section was done at the most apical level of the cement-enamel junction. The pulp chamber was photographed using a digital camera connected to an optical microscope. Then, the tooth was scanned with CBCT and the horizontal slide matching the anatomical section of pulp chamber was digitally stored. The pulp chamber section area was measured through image analysis software. The two methods provided similar results, either for monoradicular (P = 0.14) or multiradicular teeth (P = 0.93). Correlation was statistically significant (P < 0.0001), being the coefficient r = 0.89 and 0.94 for monoradicular and multiradicular teeth, respectively. Conclusively, CBCT is suitable for pulp chamber morphology evaluation. However, it has limitations in detecting the anatomical variability of small branches in root canal system

    A Specialized Processor for Track Reconstruction at the LHC Crossing Rate

    Full text link
    We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature. We find that high-quality tracking in large detectors is possible with sub-ÎĽ\mus latencies when this algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices. This opens a possibility of making track reconstruction happen transparently as part of the detector readout.Comment: Presented by G.Punzi at the conference on "Instrumentation for Colliding Beam Physics" (INSTR14), 24 Feb to 1 Mar 2014, Novosibirsk, Russia. Submitted to JINST proceeding

    SIMBOL-X : a new generation hard X-ray telescope

    Full text link
    SIMBOL-X is a hard X-ray mission, operating in the 0.5-70 keV range, which is proposed by a consortium of European laboratories for a launch around 2010. Relying on two spacecraft in a formation flying configuration, SIMBOL-X uses a 30 m focal length X-ray mirror to achieve an unprecedented angular resolution (30 arcsec HEW) and sensitivity (100 times better than INTEGRAL below 50 keV) in the hard X-ray range. SIMBOL-X will allow to elucidate fundamental questions in high energy astrophysics, such as the physics of accretion onto Black Holes, of acceleration in quasar jets and in supernovae remnants, or the nature of the hard X-ray diffuse emission. The scientific objectives and the baseline concepts of the mission and hardware design are presented.Comment: 12 pages, 16 fig., Proc. SPIE conf. 5168, San Diego, Aug. 200
    • …
    corecore