47 research outputs found

    Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing

    Get PDF
    BackgroundHigh pressure processing (HPP; i.e. 100-600MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance.ResultsNone of the tested strains were tolerant to 600MPa. A reduction of more than 5 log(10) was observed for all strains after 1min 600MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400MPa for 1min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains.ConclusionsL. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.Peer reviewe

    Listeria monocytogenes in Milk Products

    Get PDF
    peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health

    Evaluation of Methods for the Analysis of Untreated and Processed Lignocellulosic Biomasses

    Get PDF
    The overall efficiency of the transformation of lignocellulosic materials to usable products as chemicals and fuels must be governed by adequate analysis of products before and after treatments. Using some promising technologies, lignocelluloses which are biomasses from marine plant and trees, grains, food and non-food crops, and woodbased can give products as fuel alcohol and other chemicals. Various methods of transformation from feedstock to valuable end products are discussed in the scientific literature. Therefore, yields must justify methods used for biomass transformations. As a result, adequate compositional analysis of these processing stages is needed. In this chapter, standard common methods such as gravimetric, chromatography, spectroscopic and their variations for analysis on both untreated and treated lignocelluloses are highlighted. The ease of the use and challenges with recommendations to their applicability to quantifying lignocelluloses fractionations for reproducibility and to be representative are discussed. With biomass technology, virtually all and even more products that can be produced from fossil energy can also be produced from biomass energy. Adequate analysis is therefore necessary
    corecore