528 research outputs found

    Radioprotection calculations for the TRADE experiment

    Get PDF
    The TRADE project is based on the coupling of, in a sub-critical configuration, of a 115 MeV, 2 mA proton cyclotron with a TRIGA research reactor at the ENEA Casaccia centre (Rome). Detailed radioprotection calculations using the FLUKA and EA-MC Monte Carlo codes were performed during the feasibility study. The study concentrated on dose rates due to beam losses in normal operating conditions and in the calculation of activation in the most sensitive components of the experiment. Results show that a shielding of 1.4 m of barytes concrete around the beam line will be sufficient to maintain the effective doses below the level of 10 Mu Sv/h, provided that the beam losses are at the level of 10 nA/m. The activation level around the beam line and in the water will be negligible, while the spallation target will reach an activation level comparable to the one of a fuel element at maximum burnup

    An Updated Algorithm Integrated With Patient Data for the Differentiation of Atypical Nevi From Early Melanomas: the idScore 2021

    Get PDF
    Introduction: It is well known that multiple patient-related risk factors contribute to the development of cutaneous melanoma, including demographic, phenotypic and anamnestic factors. Objectives: We aimed to investigate which MM risk factors were relevant to be incorporated in a risk scoring-classifier based clinico-dermoscopic algorithm. Methods: This retrospective study was performed on a monocentric dataset of 374 atypical melanocytic skin lesions sharing equivocal dermoscopic features, excised in the suspicion of malignancy. Dermoscopic standardized images of 258 atypical nevi (aN) and 116 early melanomas (eMM) were collected along with objective lesional data (i.e., maximum diameter, specific body site and body area) and 7 dermoscopic data. All cases were combined with a series of 10 MM risk factors, including demographic (2), phenotypic (5) and anamnestic (3) ones. Results: The proposed iDScore 2021 algorithm is composed by 9 variables (age, skin phototype I/II, personal/familiar history of MM, maximum diameter, location on the lower extremities (thighs/legs/ ankles/back of the feet) and 4 dermoscopic features (irregular dots and globules, irregular streaks, blue gray peppering, blue white veil). The algorithm assigned to each lesion a score from 0 to 18, reached an area under the ROC curve of 92% and, with a score threshold ≥ 6, a sensitivity (SE) of 98.2% and a specificity (SP) of 50.4%, surpassing the experts in SE (+13%) and SP (+9%).Conclusions: An integrated checklist combining multiple anamnestic data with selected relevant dermoscopic features can be useful in the differential diagnosis and management of eMM and aN exhibiting with equivocal features

    The Microbiology of Community-acquired Peritonitis in Children

    Get PDF
    BACKGROUND: microbiologic data are lacking regarding pediatric community-acquired peritonitis (CAP). METHODS: we conducted a 2-year retrospective single center study. Consecutive children undergoing CAP surgery were included. Microbiology and antimicrobial susceptibility of peritoneal isolates were analyzed. RESULTS: a total of 70 children from 3 months to 14 years of age were included. A total of 123 bacterial isolates were analyzed. Escherichia coli was the predominant aerobic organism (51% of isolates); 54.8% were susceptible to amoxicillin whereas 90.3% were susceptible to amoxicillin-clavulanate. Anaerobes accounted for 29% of isolates, and 94.3% of strains were susceptible to amoxicillin-clavulanate and 68.5% were susceptible to clindamycin. Pseudomonas aeruginosa was present in 6% of isolates and in 10% of children. The presence of E. coli resistant to amoxicillin or to amoxicillin-clavulanate was the only independent risk factor associated with postoperative peritonitis. CONCLUSION: microbiology of pediatric CAP is similar to adult CAP with a predominancy of E. coli and anaerobes. P. aeruginosa in peritoneal samples had no apparent influence on the outcome

    UVA-1 phototherapy as adjuvant treatment for eosinophilic fasciitis: in vitro and in vivo functional characterization

    Get PDF
    Introduction: Eosinophilic fasciitis (EF) is a rare autoimmune disease causing progressive induration of dermal, hypodermal, and muscularis fascia. The exact pathogenesis is yet to be fully understood, and a validated therapy protocol still lacks. We here aimed to realize a clinical–functional characterization of these patients. Materials and methods: A total of eight patients (five males, 45 years average) were treated with adjuvant high-dose UVA-1 phototherapy (90 J/cm), after having received the standard systemic immunosuppressive protocol (oral methylprednisolone switched to methotrexate). Body lesion mapping, Localized Scleroderma Assessment Tool (LoSCAT), Dermatology Life Quality Index (DLQI), High-Resolution Ultrasound (HRUS) (13-17MHz), and ultra HRUS (55–70 MHz) were performed at each examination time taking specific anatomical points. Gene expression analysis at a molecular level and in vitro UVA-1 irradiation was realized on lesional fibroblasts primary cultures. Results: The LoSCAT and the DLQI showed to decrease significantly starting from the last UVA-1 session. A significant reduction in muscularis fascia thickness (−50% on average) was estimated starting from 3 months after the last UVA-1 session and maintained up to 12 months follow-up. Tissues was detected by HRUS. The UVA-1 in vitro irradiation of lesional skin sites cells appeared not to affect their viability. Molecular genes analysis revealed a significant reduction of IL-1ß and of TGF-ß genes after phototherapy, while MMPs 1,2,9 gene expression was enhanced. Comment: These preliminary in vivo and in vitro findings suggest that UVA-1 phototherapy is a safe and useful adjuvant therapy able to elicit anti-inflammatory effects and stimulate tissue matrix digestion and remodeling at lesional sites

    Does ergometric stress test induce a procoagulative condition in patients with previous myocardial infarction

    Get PDF
    A regularly scheduled physical training program seems to have antithrombotic effects. Moreover, the hemostatic changes occurring in patients with coronary artery disease during acute exercise have not been clearly elucidated. Since stress testing is routinely performed in clinical cardiology, it would be helpful to assess whether patients with coronary artery disease are exposed to acute coronary thrombosis during or soon after sustained physical exercise. This study was designed to evaluate the effect of acute physical exercise (stress test by bicycle ergometer) on blood coagulation in a group of patients with previous myocardial infarction, and to determine whether the antithrombotic therapy commonly administered favorably influences hemostatic equilibrium. Our results suggest that exercise testing is not harmful to patients with previous myocardial infarction in regard to hemostasis and fibrinolysis and that antithrombotic therapy reduces postexercise increase in platelets

    Comparison of reflectance confocal microscopy and line-field optical coherence tomography for the identification of keratinocyte skin tumours

    Get PDF
    Background: Reflectance confocal microscopy (RCM) and line-field confocal optical coherence tomography (LC-OCT) are non-invasive imaging devices that can help in the clinical diagnosis of actinic keratosis (AK) and cutaneous squamous cell carcinoma (SCC). No studies are available on the comparison between these two technologies for the identification of the different features of keratinocyte skin tumours. Objectives: To compare RCM and LC-OCT findings in AK and SCC. Methods: A retrospective multicenter study was conducted. Tumours were imaged with RCM and LC-OCT devices before surgery, and the diagnosis was confirmed by histological examinations. LC-OCT and RCM criteria for AK/SCC were identified, and their presence/absence was evaluated in all study lesions. Gwet AC1 concordance index was calculated to compare RCM and LC-OCT. Results: We included 52 patients with 33 AKs and 19 SCCs. Irregular epidermis was visible in most tumours and with a good degree of agreement between RCM and LC-OCT (Gwet's AC1 0.74). Parakeratosis, dyskeratotic keratinocytes and both linear dilated and glomerular vessels were better visible at LC-OCT than RCM (p < 0.001). Erosion/ulceration was identified with both methods in more than half of the cases with a good degree of agreement (Gwet AC1 0.62). Conclusions: Our results suggest that both LC-OCT and hand-held RCM can help clinicians in the identification of AK and SCC, providing an in vivo and non-invasive identification of an irregular epidermis. LC-OCT proved to be more effective in identifying parakeratosis, dyskeratotic keratinocytes and vessels in this series

    Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning

    Full text link
    Diagnosis based on histopathology for skin cancer detection is today's gold standard and relies on the presence or absence of biomarkers and cellular atypia. However it suffers drawbacks: it requires a strong expertise and is time-consuming. Moreover the notion of atypia or dysplasia of the visible cells used for diagnosis is very subjective, with poor inter-rater agreement reported in the literature. Lastly, histology requires a biopsy which is an invasive procedure and only captures a small sample of the lesion, which is insufficient in the context of large fields of cancerization. Here we demonstrate that the notion of cellular atypia can be objectively defined and quantified with a non-invasive in-vivo approach in three dimensions (3D). A Deep Learning (DL) algorithm is trained to segment keratinocyte (KC) nuclei from Line-field Confocal Optical Coherence Tomography (LC-OCT) 3D images. Based on these segmentations, a series of quantitative, reproducible and biologically relevant metrics is derived to describe KC nuclei individually. We show that, using those metrics, simple and more complex definitions of atypia can be derived to discriminate between healthy and pathological skins, achieving Area Under the ROC Curve (AUC) scores superior than 0.965, largely outperforming medical experts on the same task with an AUC of 0.766. All together, our approach and findings open the door to a precise quantitative monitoring of skin lesions and treatments, offering a promising non-invasive tool for clinical studies to demonstrate the effects of a treatment and for clinicians to assess the severity of a lesion and follow the evolution of pre-cancerous lesions over time.© 2022. The Author(s)
    • …
    corecore