721 research outputs found

    Bayesian quantification of thermodynamic uncertainties in dense gas flows

    Get PDF
    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the thermodynamic behavior of so-called dense gas flows, – i.e. flows of gases characterized by high molecular weights and complex molecules, working in thermodynamic conditions close to the liquid-vapor saturation curve–, are calibrated by means of Bayesian inference from reference aerodynamic data for a dense gas flow over a wing section. Flow thermodynamic conditions are such that the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the aim of assessing the proposed methodology, synthetic calibration data –specifically, wall pressure data– are generated by running the numerical solver with a more complex and accurate thermodynamic model. The statistical model used to build the likelihood function includes a model-form inadequacy term, accounting for the gap between the model output associated to the best-fit parameters, and the rue phenomenon. Results show that, for all of the relatively simple models under investigation, calibrations lead to informative posterior probability density distributions of the input parameters and improve the predictive distribution significantly. Nevertheless, calibrated parameters strongly differ from their expected physical values. The relationship between this behavior and model-form inadequacy is discussed.ANR-11-MONU-008-00

    Predictive RANS simulations via Bayesian Model-Scenario Averaging

    Get PDF
    The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.ANR UF

    Enrolling patients into multiple trials: it is time for glastnost

    Get PDF
    Editoriale su invit

    Toward improved simulation tools for compressible turbomachinery: assessment of Residual-Based Compact schemes for the transonic compressor NASA Rotor 37

    Get PDF
    Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with experimental data on relatively coarse grids, which allows achieving a given accuracy level with computational cost reductions by a factor between 2 and 4 with respect to standard solvers.FP7- Projet IDIHO

    On the design of high order residual-based dissipation for unsteady compressible flows

    Get PDF
    none3The numerical dissipation operator of Residual-Based Compact (RBC) schemes of high accuracy is identified and analysed for hyperbolic systems of conservation laws. A necessary and sufficient condition (-criterion) is found that ensures dissipation in 2-D and 3-Dfor any order of the RBC scheme. Numerical applications of RBC schemes of order 3, 5 and 7 to a diagonal wave advection and to a converging cylindrical shock problem confirm the theoretical results.A. Lerat; K. Grimich; P. CinnellaA., Lerat; K., Grimich; Cinnella, Paol

    Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions

    Get PDF
    International audienceThe design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this work, we first design ORC turbine geometries by means of a fast 2-D design procedure based on the method of characteristics (MOC) for supersonic nozzles characterized by strong real gas effects. Thanks to a geometric post-processing procedure, the resulting nozzle shape is then adapted to generate an axial ORC blade vane geometry. Subsequently, the impact of uncertain operating conditions on turbine design is investigated by coupling the MOC algorithm with a Probabilistic Collocation Method (PCM) algorithm. Besides, the injector geometry generated at nominal operating conditions is simulated by means of an in-house CFD solver. The code is coupled to the PCM algorithm and a performance sensitivity analysis, in terms of adiabatic efficiency and power output, to variations of the operating conditions is carried out

    Finite-rate chemistry effects in turbulent hypersonic boundary layers: a direct numerical simulation study

    Full text link
    The influence of high-enthalpy effects on hypersonic turbulent boundary layers is investigated by means of direct numerical simulations (DNS). A quasi-adiabatic flat-plate air flow at free-stream Mach number equal to 10 is simulated up to fully-developed turbulent conditions using a five-species, chemically-reacting model. A companion DNS based on a frozen-chemistry assumption is also carried out, in order to isolate the effect of finite-rate chemical reactions and assess their influence on turbulent quantities. In order to reduce uncertainties associated with turbulence generation at the inlet of the computational domain, both simulations are initiated in the laminar flow region and the flow is let to evolve up to the fully turbulent regime. Modal forcing by means of localized suction and blowing is used to trigger laminar-to-turbulent transition. The high temperatures reached in the near wall region including the viscous and buffer sublayers activate significant dissociation of both oxygen and nitrogen. This modifies in turn the thermodynamic and transport properties of the reacting mixture, affecting the first-order statistics of thermodynamic quantities. Due to the endothermic nature of the chemical reactions in the forward direction, temperature and density fluctuations in the reacting layer are smaller than in the frozen-chemistry flow. However, the first- and second-order statistics of the velocity field are found to be little affected by the chemical reactions under a scaling that accounts for the modified fluid properties. We also observed that the Strong Reynolds Analogy (SRA) remains well respected despite the severe hypersonic conditions and that the computed skin friction coefficient distributions match well the results of the Renard-Deck decomposition extended to compressible flows

    Georges Lefebvre et l’historiographie soviĂ©tique de la RĂ©volution française

    Get PDF
    Les pages qui suivent vont tenter d’esquisser le problĂšme de la rĂ©ception de Georges Lefebvre en Union SoviĂ©tique. Quel a Ă©tĂ© l’écho de ses travaux scientifiques en URSS ? Quelle influence a-t-il exercĂ© sur l’historiographie soviĂ©tique ? Je crois qu’il faudrait distinguer diffĂ©rentes Ă©tapes dans la diffusion de l’Ɠuvre de Lefebvre en Russie communiste. D’abord, on le considĂ©rait comme un Ă©rudit de valeur s’occupant de sujets locaux ; ensuite, dans les annĂ©es Trente, on le dĂ©couvrit comme hist..
    • 

    corecore