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The numerical dissipation operator of residual-based compact (RBC) schemes of high accu-
racy is identified and analysed for hyperbolic systems of conservation laws. A necessary
and sufficient condition (v-criterion) is found that ensures dissipation in 2-D and 3-D for
any order of the RBC scheme. Numerical applications of RBC schemes of order 3, 5 and 7
to a diagonal wave advection and to a converging cylindrical shock problem confirm the
theoretical results.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Classical methods for calculating compressible flows on a structured mesh rely on a directional approach in which space
derivatives are approximated independently direction by direction. In the present paper, we study compact approximations
that provide high accuracy not for each space derivative treated apart but for the complete residual r, i.e. the sum of all of the
terms in the governing equations. For steady problems solved by time marching, r is the residual at steady state; it involves
space derivatives only. For unsteady problems, r also includes the time derivative. Schemes of this type are referred-to as
residual-based compact (RBC). They have been developed in the last ten years and applied to realistic flow configurations
in aerodynamics and aeroacoustics (see [1–8]). Related schemes are the Residual Distribution Schemes (see [9–12]), devel-
oped on unstructured meshes, in which the residuals are distributed to the nodes of triangles or tetrahedrons following suit-
able design principles. A special feature of the RBC schemes is the use of a numerical dissipation term also constructed from
the complete residual r. This unusual dissipation gives to the RBC schemes special properties that have not been fully ana-
lyzed so far. In practice, the RBC schemes are robust for steady flow computations, but some of them may have difficulties
(described in Section 2.5) for unsteady problems, apparently due to a weak instability. Here, we present a comprehensive
study of the residual-based dissipation term of high-order RBC schemes for the unsteady Euler equations. The study provides
a deeper insight of the dissipation mechanism, provides a mathematical criterion (called v-criterion) characterizing the dis-
sipation for 2-D and 3-D problems and restores the stability of RBC schemes for unsteady problems. Given the importance of
numerical dissipation in computational fluid dynamics, it is also hoped that the present work could help the development of
other classes of high-order schemes.

The paper is organized as follows. Section 2 reminds the principles of high-order RBC schemes for solving a hyperbolic
system of conservation laws on a 2-D Cartesian mesh. Such schemes are dissipative and compact (for instance, order 7 in
. All rights reserved.
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space is achieved using 5� 5-points only). Compact schemes for compressible flows have been mainly developed as centered
approximations in space (see [13–16] for instance) relying on the use of artificial viscosities, numerical filters or limiters for
shock capturing. Upwind compact schemes have also been proposed in [17,18]. A peculiarity of the present RBC schemes is
to use three independent compact approximations of the residual (four in 3-D). One applies to the usual residual at the cur-
rent location j; k (main residual). The two others are involved in the dissipation and defined at location jþ 1

2 ; k or j; kþ 1
2 (mid-

point residuals). A correct choice of the discretization of the mid-point residuals is essential to ensure dissipation for all flow
conditions. This is why we try here to identify the effective dissipation operator, which is not obvious for a RBC scheme since
the dissipation operator comes from high order expansions of the mid-point residuals. This work is done in two stages, in
Section 3 and 4 respectively, for RBC schemes of order 2p� 1 ¼ 3;5 and 7. In Section 5, the dissipation operator is cast into
a general form (2-D partial differential operator of degree 2p) and a necessary and sufficient condition, the v-criterion, is
found for this operator be always dissipative. Application of this criterion to the RBC schemes gives the correct coefficients
to use in the high-order approximations of the mid-point residuals. A complete extension of the analysis to three space-
dimension is presented in Section 6. Finally, numerical experiments are presented in Section 7 to confirm the relevance
of the v-criterion.

2. High-order RBC schemes

2.1. Concept of residual-based scheme

Let us consider an initial-value problem for the hyperbolic system of conservation laws:
wt þ fx þ gy ¼ 0 ð1Þ
where t is the time, x and y are Cartesian space coordinates, w is the state vector and f ¼ f ðwÞ; g ¼ gðwÞ are flux components
depending smoothly on w. The Jacobian matrices of the flux are denoted A ¼ df=dw and B ¼ dg=dw. System (1) is approxi-
mated in space on a uniform mesh ðxj ¼ jdx; yk ¼ kdyÞ with steps dx and dy of the same order of magnitude, say OðhÞ, using a
residual-based scheme. Such a scheme can be expressed only in terms of approximations of the exact residual, i.e. of the left-
hand side of System (1). More precisely this scheme is a discrete form of
wt þ fx þ gy ¼
dx
2
½U1ðwt þ fx þ gyÞ�x þ

dy
2
½U2ðwt þ fx þ gyÞ�y ð2Þ
The coefficients U1 and U2 are numerical viscosity matrices that depend only on the eigensystems of the Jacobian matrices A
and B and on the step ratio dx=dy. They use no tuning parameters or limiters. Their construction is presented in Section 2.4.

In System (2), the exact residual
r ¼ wt þ fx þ gy
is everywhere approximated in a space-centered way, but not at the same location or at the same order. The discrete form of
(2) can be written as
~rj;k ¼ ~dj;k ð3Þ
where ~rj;k is a space-centered approximation of r, called the main residual and ~dj;k is the residual-based dissipation defined as:
~dj;k ¼
1
2
ðU1 ~r1Þjþ1

2;k
� ðU1 ~r1Þj�1

2;k

h i
þ 1

2
ðU2 ~r2Þj;kþ1

2
� ðU2 ~r2Þj;k�1

2

h i
ð4Þ
where ð ~r1Þjþ1
2;k

and ð ~r2Þj;kþ1
2

are space-centered approximations of r, called the mid-point residuals - see Fig. 1.
Despite appearance, the order of magnitude of the residual-based dissipation is not simply OðhÞ as it could seem from (2),

but much smaller because the mid-point residuals approximate the exact residual which is everywhere null. Since centered
differencing always leads to even order of accuracy, let the mid-point residuals be discretized so that
Fig. 1. Location of the discrete residuals, �: main residual ~r;�: mid-point residual ~r1 or ~r2.
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ð ~r1Þjþ1
2;k
¼ rjþ1

2;k
þOðh2p�2Þ þ OðDtlÞ ¼ Oðh2p�2Þ þ OðDtlÞ

ð ~r2Þj;kþ1
2
¼ rj;kþ1

2
þOðh2p�2Þ þ OðDtlÞ ¼ Oðh2p�2Þ þ OðDtlÞ
where p and l are integers (p P 2; l P 1). Then the residual-based dissipation verifies
~dj;k ¼ Oðh2p�1Þ þ OðhDtlÞ: ð5Þ
If in addition the main residual is such that
~rj;k ¼ rj;k þOðh2pÞ þ OðDtlÞ ¼ Oðh2pÞ þ OðDtlÞ
then the truncation error of the scheme (3) is
ej;k ¼ Oðh2pÞ þ OðDtlÞ þ Oðh2p�1Þ þ OðhDtlÞ ¼ Oðh2p�1Þ þ OðDtlÞ ð6Þ
and the scheme is accurate at order 2p� 1 in space. Since the spatial approximation of ~r; ~r1 and ~r2 will be made using com-
pact formulas, the scheme (3) is said to be residual-based compact of order 2p� 1 and denoted as RBC2p�1.

2.2. Main residual

Let us first introduce the way we denote and handle high order approximations in the main residual. Any discrete formula
can easily be expressed from combinations of a difference and an average operator over one mesh interval in each space
direction, namely
ðd1vÞjþ1
2;k
¼ v jþ1;k � v j;k ðd2vÞj;kþ1

2
¼ v j;kþ1 � v j;k

ðl1vÞjþ1
2;k
¼ 1

2
ðv jþ1;k þ v j;kÞ ðl2vÞj;kþ1

2
¼ 1

2
ðv j;kþ1 þ v j;kÞ
where j and k are integers or half integers. All these discrete operators commute. For instance:
d1l1f
dx

� �
j;k

¼ l1d1f
dx

� �
j;k

¼ fjþ1;k � fj�1;k

2dx
;

ðd2
1f Þj;k ¼ d1 d1fð Þð Þj;k ¼ fjþ1;k � 2f j;k þ fj�1;k:

ð7Þ
With the above notations, the 8th-order centered approximation at (j; k) of a first derivative of a smooth function (f 2 C9) can
be written as:
fx ¼ I � 1
6

d2
1 þ

1
30

d4
1 �

1
140

d6
1

� �
d1l1f

dx
þOðdx8Þ ð8Þ
where I is the identity operator and the subscripts (j; k) are omitted. This formula has a 9-point stencil (from j� 4; k to
jþ 4; k). The advantage of the writing (8) is to use 3 coefficients only � 1

6 ;
1

30 ;� 1
140

� �
and to display embedded formulas of

lower order: dropping the d6 term leads to the 6th-order approximation, dropping also the d4 term leads to the 4th-order
and dropping in addition the d2 term gives the 2nd-order formula (7).

Compact approximations can be described similarly by using Pade fractions of difference operators. For instance, a 8th-
order centered approximation at (j; k) of a first derivative on a 5-point stencil can be written formally as:
fx ¼
I þ 5

42 d2
1

I þ 2
7 d2

1 þ 1
70 d4

1

d1l1f
dx
þOðdx8Þ ð9Þ
The meaning of the above formula is
I þ 2
7

d2
1 þ

1
70

d4
1

� �
fx ¼ I þ 5

42
d2

1

� �
d1l1f

dx
þOðdx8Þ ð10Þ
where both sides are defined on a 5-point stencil. In other words, the ‘‘denominator’’ in (9) denotes an operator inversion. An
important point is the following one: by expanding the inverse of the denominator ðI þ e1Þ�1 in terms of the operator
e1 ¼ 2

7 d2
1 þ 1

70 d4
1 ¼ Oðh

2Þ and taking into account the numerator I þ 5
42 d2

1, we recover a non-compact formula which is nothing
but (8). Conversely, this procedure is useful to determine the coefficients of a compact formula from the knowledge of a non-
compact one.

In a compact formula like (10), the derivative is usually found by solving a linear algebraic system on each horizontal
mesh line k ¼ cte. In the present residual-based approach we do not follow this procedure, as we will see below. Finally,
it should be emphasized that a compact formula reduces the truncation error with respect to a non-compact one of the same
order of accuracy. For instance the remainder Oðdx8Þ in (8) and (10) can be expressed as1:
his paper, fqx denotes the qth-derivative @q f
@xq .
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Cdx8f9xðxj þ hdxÞ; with � 4 6 h 6 4
where the constant C is � 1
630 for the non compact formula (8) and � 1

44100 for the compact formula (10), which is precisely 70
times smaller. Fourier analysis also shows that compactness improves accuracy in all the spectrum (see Lele [13]).

We now describe the compact treatment of the main residual ~rj;k in the RBC2p�1 scheme. As we have seen in Section 2.1,
the main residual should be approximated at order 2p. This is done by using the Pade fractions:
ðfxÞj;k ¼
N1

D1

d1l1f
dx

 !
j;k

þOðdx2pÞ

ðgyÞj;k ¼
N2

D2

d2l2g
dy

 !
j;k

þOðdy2pÞ
ð11Þ
where Nm and Dm are formal polynomials of second difference operators:
Nm ¼ I þ �ad2
m; Dm ¼ I þ �bd2

m þ �cd4
m; m ¼ 1;2; ð12Þ
The degrees of these polynomials are chosen so that the scheme stencil does not exceed 5 � 5 points. Both space directions
are treated similarly, i:e. the polynomials coefficients �a; �b and �c are the same for m ¼ 1 and 2.

The denominators in (11) are eliminated by applying the operator D1D2 to all the terms. Then, the main residual is defined
as:
~rj;k ¼ D1D2wt þ D2N1
d1l1f

dx
þ D1N2

d2l2g
dy

� �
j;k
which is really of order 2p, since
~rj;k ¼ ðD1D2Þj;k wt þ fx þ gy þOðh
2pÞ

h i
¼ ðD1D2Þj;kOðh

2pÞ ¼ I þOðh2Þ
h i

Oðh2pÞ ¼ Oðh2pÞ:
The detailed expression of the main residual is
~rj;k ¼ ðI þ �bd2
1 þ �cd4

1ÞðI þ �bd2
2 þ �cd4

2Þwt
�

þðI þ �bd2
2 þ �cd4

2ÞðI þ �ad2
1Þ

d1l1f
dx
þ ðI þ �bd2

1 þ �cd4
1ÞðI þ �ad2

2Þ
d2l2g

dy

�
j;k

ð13Þ
Several accuracy orders 2p can be reached with this expression.

(a) Order 2p ¼ 4 is achievable on a 3 � 3-point stencil by the choice:
�a ¼ 0; �b ¼ 1
6
; �c ¼ 0: ð14Þ
which reduces (13) to
~rj;k ¼ I þ 1
6

d2
1

� �
ðI þ 1

6
d2

2Þwt þ I þ 1
6

d2
2

� �
d1l1f

dx
þ I þ 1

6
d2

1

� �
d2l2g

dy

� �
j;k

ð15Þ
(b) Order 2p ¼ 6 can be obtained using
�a ¼ 1
30
þ 6�c; �b ¼ 1

5
þ 6�c
which gives a family of the 6th-order approximations depending on the coefficient �c. The choice �c ¼ 0 is the simplest one, but
we retain the one made in [4,5]:
�a ¼ 1
10

; �b ¼ 4
15

; �c ¼ 1
90

ð16Þ
because it is more suitable for the extension to the compressible Navier–Stokes equations.
(c) Finally, order 2p ¼ 8 (the highest one for a 5 � 5-point stencil) can be obtained only with
�a ¼ 5
42

; �b ¼ 2
7
; �c ¼ 1

70
ð17Þ
which corresponds to the example of Pade fractions (9). Concerning now the time approximation, it is treated indepen-
dently of the space approximation, so that various choices can be made. In the present work, we use a linear multistep meth-
od (LMM). In this implicit method, the residual is taken at the new time level ðnþ 1ÞDt and
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ðwtÞnþ1 ¼ 1
Dt

Dwþ 1
2

D2wþ 1
3

D3wþ � � � þ 1
l
Dlw

� �nþ1

þOðDtlÞ ð18Þ
where
ðDwÞnþ1 ¼ wnþ1 �wn; D2w ¼ DðDwÞ; D3w ¼ DðD2wÞ . . .
For l ¼ 2, we get the popular approximation
ðwtÞnþ1 ¼ 1
2Dt

3wnþ1 � 4wn þwn�1� �
þOðDt2Þ: ð19Þ
LMM methods are A-stable at order l ¼ 1 and 2 and A (a)-stable at higher orders (see [19–21]). A-stable methods are uncon-
ditionally stable when the spatial approximation is dissipative.

2.3. Mid-point residuals

We now consider the dissipation term (4). Using the discrete operators introduced in the previous section, it can be
rewritten as:
~dj;k ¼
1
2
½d1ðU1~r1Þ þ d2ðU2~r2Þ�j;k ð20Þ
In theory, the mid-point residuals ð~r1Þjþ1
2;k

and ð~r2Þj;kþ1
2

are constructed similarly as the main residual. In practice, the treat-
ment is a bit more intricate. First, to define a mid-point residual, say ð~r1Þjþ1

2;k
, we have to approximate fx and to average

wt þ gy at the mid location x ¼ ðjþ 1
2Þdx, using new types of Pade fractions based on the 2-point difference and average oper-

ators d1 and l1. As mentioned in Section 2.1, the mid-point residuals are discretized at a lower order than the main residual
(2p� 2 instead of 2p). So we introduce:
ðfxÞjþ1
2;k
¼ Nd

1

Dd
1

d1f
dx

 !
jþ1

2;k

þOðdx2p�2Þ

ðgyÞj;kþ1
2
¼ Nd

2

Dd
2

d2g
dy

 !
j;kþ1

2

þOðdy2p�2Þ
ð21Þ
and for any mesh function v:
ðvÞjþ1
2;k
¼ Nl

1

Dl
1

l1v
� �

jþ1
2;k

þOðdx2p�2Þ

ðvÞj;kþ1
2
¼ Nl

2

Dl
2

l2v
� �

j;kþ1
2

þOðdy2p�2Þ
ð22Þ
where Nd
m;D

d
m;N

l
m and Dl

m for m ¼ 1;2 are formal polynomials of second difference operators:
Nd
m ¼ I þ add2

m; Nl
m ¼ I þ ald2

m

Dd
m ¼ I þ bdd2

m þ cdd4
m; Dl

m ¼ I þ bld2
m þ cld4

m:
ð23Þ
Another point is that the dissipation has to be defined on a 5 � 5-point stencil as the main residual. Therefore, the formula
(20) shows that the mid-point residuals should have smaller stencils. Namely, ð~r1Þjþ1

2;k
and ð~r2Þj;kþ1

2
should only use 4 � 5 and

5 � 4 points, respectively. Fortunately, this is possible because orders 2p� 2 ¼ 2;4 and 6 can be achieved with Pade fractions
(21) having the same denominators, more precisely:
Dd
1 ¼ Dl

1 ; Dd
2 ¼ Dl

2 ð24Þ
Finally, for the approximations of gy at jþ 1
2 ; k in ~r1 (respectively of fx at j; kþ 1

2 in ~r2), we need the average (22) in the x-direc-
tion (resp. in the y-direction), but also the classical Pade fractions for a derivative in the y-direction (resp. in the x-direction).
These Pade fractions are analogous to the formulas (11) used in the main residual, but they have different coefficients be-
cause they require a lower accuracy order (2p� 2 instead of 2p). So we introduce new formal polynomials Nm;Dm and define:
ðfxÞj;k ¼
N1

D1

d1l1f
dx

� �
j;k
þOðdx2p�2Þ

ðgyÞj;k ¼
N2

D2

d2l2g
dy

� �
j;k
þOðdy2p�2Þ

ð25Þ
where
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Nm ¼ I þ ad2
m; Dm ¼ I þ bd2

m þ cd4
m; m ¼ 1;2: ð26Þ
Here the denominators are compatible with the stencils of the mid-point residuals (5 points allowed in the y-direction for ~r1

and in the x-direction for ~r2).
A direct discretization of the exact residual at jþ 1

2 ; k gives:
ðwt þ fx þ gyÞjþ1
2;k
¼ Nl

1

Dl
1

l1 wt þ
N2

D2

d2l2g
dy

� �
þ Nd

1

Dd
1

d1f
dx

" #
jþ1

2;k

þOðh2p�2Þ
By applying the operator Dl
1 D2 ¼ Dd

1D2 to all the terms, we obtain the first mid-point residual:
ð~r1Þjþ1
2;k
¼ Nl

1l1 D2wt þ N2
d2l2g

dy

� �
þ Nd

1D2
d1f
dx

� �
jþ1

2;k
ð27Þ
Similarly, we get the second mid-point residual:
ð~r2Þj;kþ1
2
¼ Nl

2l2 D1wt þ N1
d1l1f

dx

� �
þ Nd

2D1
d2g
dy

� �
j;kþ1

2

: ð28Þ
These residuals are respectively defined on a 4 � 5 and a 5 � 4-point stencil. Both can be Oðh2p�2Þ for p ¼ 2;3;4. Their de-
tailed expressions can be written as:
~r1 ¼ ðI þ bd2
2 þ cd4

2Þ ðI þ ald2
1Þl1wt þ ðI þ add2

1Þ
d1f
dx

� �
þ ðI þ ald2

1ÞðI þ ad2
2Þ

d2l2l1g
dy

~r2 ¼ ðI þ bd2
1 þ cd4

1Þ ðI þ ald2
2Þl2wt þ ðI þ add2

2Þ
d2g
dy

� �
þ ðI þ ald2

2ÞðI þ ad2
1Þ

d1l1l2f
dx

:

ð29Þ
They depend on the five coefficients al; ad; a; b and c, the values of which will be given in Section 3 and 4. Note that the time
approximation in the mid-point residuals is the same as in the main residual.

2.4. Numerical viscosity matrices

The numerical viscosity matrices U1 and U2 in the residual-based dissipation were designed for the solution of steady
flow problems. For these problems, the time derivative is cancelled into the mid-point residuals (29) and the scheme be-
comes a discrete form of
wt þ fx þ gy ¼ dsteady ð30Þ
where
dsteady ¼ dx
2
½U1ðfx þ gyÞ�x þ

dy
2
½U2ðfx þ gyÞ�y ð31Þ
The time evolution being reduced to a numerical procedure to reach a steady-state solution, we simply use the backward
Euler approximation in time (LMM method of order 1) with a large time step. During the convergence to the steady-state,
note that the residual-based scheme is also first-order in space because of the lack of wt in (31). This ensures robustness to
the scheme in the convergence process. At steady-state, the scheme recovers the high accuracy order of the spatial
approximation.

It is clear that some conditions should be satisfied by U1 and U2 in order that (31) be actually dissipative. The term dsteady

can be rewritten as:
dsteady ¼ dx
2
ðU1Awx þU1BwyÞx þ

dy
2
ðU2Awx þU2BwyÞy ð32Þ
Consider the case where A;B;U1 and U2 are scalar constants. Then (32) reduces to
dsteady ¼ Dsteadyw
with the linear partial differential operator of second order:
Dsteady ¼ dx
2

U1A
@2

@x2 þ
1
2
ðdxU1Bþ dyU2AÞ @2

@x@y
þ dy

2
U2B

@2

@y2
which contains the highest derivatives of (32). The Fourier symbol of Dsteady is:
bDsteady ¼ �1
2

dxU1An2 þ ðdxU1Bþ dyU2AÞngþ dyU2Bg2� 	
ð33Þ
where n and g are the wave numbers (Fourier variables).
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By dissipation (in the broad sense), we mean:
8n 2 R; 8g 2 R; bDsteadyðn;gÞ 6 0;
that is dsteady damps any Fourier mode.
For n ¼ 0, the above dissipation condition leads to U2B P 0. For n – 0, we can rewrite (33) as:
bDsteadyðn;gÞ ¼ � n2

2
Dðn;gÞ
with
Dðn;gÞ ¼ dxU1Aþ ðdxU1Bþ dyU2AÞ g
n

� �
þ dyU2B

g
n

� �2
Clearly, D is always positive if and only if
U2B P 0 and D 6 0
where
D ¼ ðdxU1Bþ dyU2AÞ2 � 4dxU1AdyU2B ¼ ðdxU1B� dyU2AÞ2:
Thus, the necessary and sufficient conditions to get dissipation are U2B P 0 and D ¼ 0, which can also be expressed as:
U1A P 0; U2B P 0
dxU1B ¼ dyU2A

ð34Þ
Introducing the notations
U1 ¼ sgnðAÞU; U2 ¼ sgnðBÞW

a ¼ dxjBj
dyjAj ;

ð35Þ
the dissipation conditions (34) become:
U P 0; W ¼ aU: ð36Þ
Note that the parameter a characterizes the local advection direction with respect to the mesh. For a ¼ 1, the advection takes
place along the mesh diagonal. For a < 1, it takes place between the x-direction and a mesh diagonal and for a > 1 between
the y-direction and a mesh diagonal. Various choices of U satisfying (36) are possible. An optimal one proposed in [1] is:
U ¼minð1;1
a
Þ; W ¼ aU ¼ minð1;aÞ: ð37Þ
These functions make use of no tuning parameter and only depend on the local advection direction a. For hyperbolic systems
of conservation laws, the matrix functions U1 and U2 are defined through a direct extension of the scalar case: the eigenvec-
tors of U1 are those of the Jacobian matrix A – evaluated at some suitable intermediate state–, the eigenvectors of U2 are
those of B and the eigenvalues of U1 and U2 are deduced from the above scalar definitions. More precisely, let TA (respectively
TB) be a matrix the columns of which are the right eigenvectors of A (resp. B) and let aðiÞ (resp. bðiÞ) be the eigenvalues of A
(resp. B). Matrices U1 and U2 are then defined as
U1 ¼ TADiag½/ðiÞ1 �T
�1
A ; U2 ¼ TBDiag½/ðiÞ2 �T

�1
B

with
/ðiÞ1 ¼ sgnðaðiÞÞ/ðiÞ; /ðiÞ2 ¼ sgnðbðiÞÞwðiÞ

/ðiÞ ¼min 1;
dyjaðiÞj
dxmðBÞ

� �
; wðiÞ ¼min 1;

dxjbðiÞj
dymðAÞ

 !

where Diag½dðiÞ� denotes a diagonal matrix with diagonal entries dðiÞ and mðAÞ ¼min

i
jaðiÞj, mðBÞ ¼min

i
jbðiÞj.

2.5. Dissipation mechanism for steady and unsteady computations

For steady flow problems, it is clear that the operator dsteady in (31) with the above numerical viscosity matrices U1 and U2

ensures dissipation. As a matter of fact, its use has led to successful calculations of various steady flow problems (see [2,8] for
instance).

For unsteady simulations, the time derivative is included in the dissipation operator as in (2) and the viscosity matrices
are kept unchanged. This has allowed the solution of the Euler equations using RBC schemes of order 5 and 7 for shock-vor-



A. Lerat et al. / Journal of Computational Physics 235 (2013) 32–51 39
tex interaction [5], the computation of some turbomachinery flows using RBC3 [7] and a 3D propagation of spinning acoustic
modes in an aeroengine inlet using RBC7 [8]. However for the later case, a 10th-order azimuthal filtering was necessary.
Other unsteady applications to turbomachinery flows were difficult, even with the RBC scheme of order 3, so that a weak
instability of the unsteady scheme can be suspected. This is the reason why a deeper insight of the dissipation mechanism
is needed.

For the unsteady scheme, the discrete operator ~dj;k represents the differential operator:
d ¼ dx
2
½U1ðwt þ fx þ gyÞ�x þ

dy
2
½U2ðwt þ fx þ gyÞ�y ð38Þ
which cannot be viewed as the real dissipation since it is identically null! So the effect of ~dj;k must be identified by expanding
it further in space and time. For a RBC2p�1 scheme, the dissipation ~dj;k is of order h2p�1 in space -see (5). To identify it, the
centered term ~dj;k must be expanded up to a remainder Oðh2pþ1Þ. Concerning the expansion in time, the expression (6) of
the truncation error of the global scheme shows that the leading term in space comes from the dissipation and the leading
term in time from the main residual. Therefore, the dissipation operator can finally be studied by expanding ~dj;k in space only,
that is by keeping the time derivative continuous in the dissipation. In other words, a semi-discrete analysis of the dissipa-
tion (based on the expression (29) of the mid-point residuals) is sufficient for studying its effect on the scheme. For a better
understanding of the role of the different contributions in the dissipation, this semi-discrete analysis will be done in two
stages: in the following section, we restrict our attention to the role of the x-discretization in ~r1 and of the role of the y-
discretization in ~r2 and, in the section after, we complete the analysis by adding the effect of the remaining spatial discrete
terms.

3. Partial analysis of the RBC dissipation

3.1. Partial residual ~r1
x

Here, we discretize at ðjþ 1
2 ; kÞ the x-derivative as in (21) and the x-average as in (22), but we keep continuous the y-

derivative (we do not use (25)). Then the mid-point residual ~r1 defined in (27) takes the partial form:
ð ~r1
xÞjþ1

2;k
¼ Nl

1l1ðwt þ gyÞ þ Nd
1
d1f
dx

� �
jþ1

2;k

¼ ðI þ ald2
1Þl1ðwt þ gyÞ þ ðI þ add2

1Þ
d1f
dx

� �
jþ1

2;k

ð39Þ
We now carry out a Taylor expansion of ~r1
x around ðjþ 1

2Þdx. Provided the exact residual is sufficiently smooth, we obtain
after some algebra:
Nl
1l1v ¼ v þ dx2

8
ð1þ 8alÞvxx þ

dx4

384
ð1þ 80alÞv4x þ

dx6

46080
ð1þ 728alÞv6x þOðdx8Þ; ð40Þ
where v ¼ wt þ gy and,
Nd
1
d1f
dx
¼ fx þ

dx2

24
ð1þ 24adÞfxxx þ

dx4

1920
ð1þ 240adÞf5x þ

dx6

322560
ð1þ 2184adÞf7x þOðdx8Þ: ð41Þ
For brevity, the subscript ðjþ 1
2 ; kÞ has been omitted. Summing (40) and (41) gives:
~r1
x ¼ r þ dx2

8
ð1þ 8alÞrxx þ dx2 ad � al � 1

12

� �
fxxx þ

dx4

384
ð1þ 80alÞr4x þ

dx4

24
3ad � 5al � 1

20

� �
f5x

þ dx6

46080
ð1þ 728alÞr6x þ

dx6

5760
39ad � 91al � 3

28

� �
f7x þOðdx8Þ ð42Þ
with the exact residual r ¼ wt þ fx þ gy ¼ v þ fx. Since r is null everywhere for an exact unsteady solution, ~r1
x at ðjþ 1

2 ; kÞ
reduces to:
~r1
x ¼ dx2 ad � al � 1

12

� �
fxxx þ

dx4

24
3ad � 5al � 1

20

� �
f5x þ

dx6

5760
39ad � 91al � 3

28

� �
f7x þOðdx8Þ ð43Þ
which no longer contains t and y-derivatives.

3.2. Partial residual ~r2
y

Similarly, we restrict the mid-point residual ~r2 to the partial form:
ð ~r2
yÞj;kþ1

2
¼ Nl

2l2ðwt þ fxÞ þ Nd
2
d2g
dy

� �
j;kþ1

2

¼ ðI þ ald2
2Þl2ðwt þ fxÞ þ ðI þ add2

2Þ
d2g
dy

� �
j;kþ1

2

ð44Þ
Carrying out similar Taylor expansions at ðj; kþ 1
2Þ as above, we obtain
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~r2
y ¼ dy2 ad � al � 1

12

� �
gyyy þ

dy4

24
3ad � 5al � 1

20

� �
g5y þ

dy6

5760
39ad � 91al � 3

28

� �
g7y þOðdy8Þ ð45Þ
3.3. Partial dissipation ~dx;y

Inserting the partial residuals (39) and (44) in the dissipation (20) gives the partial dissipation term:
~dx;y
j;k ¼

1
2
½d1ðU1 ~r1

xÞ þ d2ðU2 ~r2
yÞ�j;k ð46Þ
(a) For ad � al – 1
12, the partial mid-point residuals are Oðh2Þ.

If
ad ¼ al ¼ 0 ð47Þ
then these residuals reduce to 2-point formulas and from the expansions (43) and (45), we obtain:
~r1
x ¼ � dx2

12
fxxx þOðdx4Þ; ~r2

y ¼ � dy2

12
gyyy þOðdy4Þ ð48Þ
Therefore the partial dissipation involves only 3� 3-points and expands as:
~dx;y ¼ � 1
24
½dx3ðU1fxxxÞx þ dy3ðU2gyyyÞy� þ Oðh

5Þ ð49Þ
(b) For
ad � al ¼ 1
12

and al –
1

10
ð50Þ
the mid-point residuals are Oðh4Þ and expand as:
~r1
x ¼ dx4

12
1

10
� al

� �
f5x þOðdx6Þ; ~r2

y ¼ dy4

12
1

10
� al

� �
g5y þOðdy6Þ ð51Þ
so that the partial dissipation is represented by:
~dx;y ¼ 1
24

1
10
� al

� �
½dx5ðU1f5xÞx þ dy5ðU2g5yÞy� þ Oðh

7Þ ð52Þ
(c) Finally, for
al ¼ 1
10

and ad ¼ 11
60

ð53Þ
we obtain:
~r1
x ¼ � dx6

2800
f7x þOðdx8Þ; ~r2

y ¼ � dy6

2800
g7y þOðdy8Þ ð54Þ
and
~dx;y ¼ � 1
5600

½dx7ðU1f7xÞx þ dy7ðU2g7yÞy� þ Oðh
9Þ ð55Þ
In this first stage of the analysis, we have obtained the dissipation contribution due to the approximation in the main direc-
tion of each mid-point residual. This intermediate result is useful to simplify the global analysis, but above all it will be
important for the interpretation of the v-criterion for dissipation in Section 5.
4. Full analysis of the RBC dissipation

4.1. Residuals ~r1 and ~r2

We consider the complete mid-point residuals (27), (28). A Taylor expansion of ~r1 can easily be obtained from the one of
~rx

1 by noting that (25) yields
N2
d2l2g

dy
¼ D2ðgy þ e2Þ; e2 ¼ Oðdy2p�2Þ ð56Þ
so that ~r1 can be related to ~rx
1 as
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~r1 ¼ D2ð~rx
1 þ Nl

1l1e2Þ:
Since Nl
1 and D2 are consistent with the identity plus second order terms, whereas ~rx

1 and e2 are Oðh2p�2Þ for p P 2, we get
~r1 ¼ ~rx
1 þ l1e2 þOðh2pÞ: ð57Þ
Similarly, using
N1
d1l1f

dx
¼ D1ðfx þ e1Þ; e1 ¼ Oðdx2p�2Þ ð58Þ
we get
~r2 ¼ ~ry
2 þ l2e1 þOðh2pÞ: ð59Þ
The simple relations (57) and (59) are used below to obtain the full dissipation term ~d of the RBC2p�1 schemes, for p ¼ 2;3
and 4.

4.2. Dissipation for RBC3

The RBC3 scheme is constructed on a 3 � 3-point stencil from the 4th-order main residual (15) and from a 3rd-order dis-
sipation based on 2nd-order mid-point residuals defined by (29) with
ad ¼ al ¼ a ¼ c ¼ 0; ð60Þ
that is
~r1 ¼ ðI þ bd2
2Þ l1wt þ

d1f
dx

� �
þ d2l2l1g

dy

~r2 ¼ ðI þ bd2
1Þ l2wt þ

d2g
dy

� �
þ d1l1l2f

dx

ð61Þ
the stencils of which use 2 � 3 and 3 � 2-points, respectively. Thus, the RBC3 dissipation depends on the parameter b only.
Its simplest form corresponds to b ¼ 0. This choice was made in the first paper on residual-based schemes [1], focussed on
the calculation of steady compressible flows. As we discussed in Section 2, any consistent approximation of dsteady is dissipa-
tive with the numerical viscosity matrices given in Section 2.4. However for unsteady problems, the RBC3 dissipation with
b ¼ 0 is not always dissipative as we will prove through the study of the dissipation for any b.

Let us now complete the expansion of the mid-point residuals (61) using the relations (57), (59) and the expansions (48)
of ~rx

1 and ~ry
2 for ad ¼ al ¼ 0. A classical expansion of the Pade approximations (56), (58) with a ¼ c ¼ 0 gives the error terms:
e1 ¼
1
6
� b

� �
dx2fxxx þOðdx4Þ; e2 ¼

1
6
� b

� �
dy2gyyy þOðdy4Þ;
so that we obtain:
~r1 ¼ �
dx2

12
fxxx þ

1
6
� b

� �
dy2gyyy þOðh

4Þ

~r2 ¼ �
dy2

12
gyyy þ

1
6
� b

� �
dx2fxxx þOðh4Þ:
Inserting these expansions in the definition (20) of ~d, we find the effective RBC3 dissipation term for unsteady problems:
~d ¼ �j½U1ðdx3fxxx þ vdxdy2gyyyÞ�x � j½U2ðdy3gyyy þ vdydx2fxxxÞ�y þOðh
5Þ ð62Þ
with the coefficients
j ¼ 1
24

; v ¼ 2ð6b� 1Þ:
The dissipative nature of this term depends on the parameter b and will be studied in the general framework of Section 5.

4.3. Dissipation for RBC5

The RBC5 scheme is constructed on a 5 � 5-point stencil from the 6th-order main residual (13) with (16) and a 5th-order
dissipation based on 4th-order mid-point residuals defined by (29) with ad and al related by (50). For the error terms e1 and
e2 in (56), (58) be Oðh4Þ, we prescribe
b� a ¼ 1
6

ð63Þ
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which precisely gives:
e1 ¼
b
6
� c � 1

30

� �
dx4f5x þOðdx6Þ
and a similar expression for e2. By plugging these results in Eqs. (57), (59) and using the expansions (51), we obtain:
~r1 ¼
1

12
1

10
� al

� �
dx4f5x þ

b
6
� c � 1

30

� �
dy4g5y þOðh

6Þ

~r2 ¼
1

12
1

10
� al

� �
dy4g5y þ

b
6
� c � 1

30

� �
dx4f5x þOðh6Þ

ð64Þ
Inserting (64) in (20), we get the effective RBC5 dissipation term for unsteady problems:
~d ¼ j½U1ðdx5f5x þ vdxdy4g5yÞ�x þ j½U2ðdy5g5y þ vdydx4f5xÞ�y þOðh
7Þ ð65Þ
with the coefficients
j ¼ 1
24

1
10
� al

� �
; v ¼ 1

2j
b
6
� c � 1

30

� �
:

and al < 1=10.

4.4. Dissipation for RBC7

The RBC7 scheme is constructed on a 5 � 5-point stencil from the 8th-order main residual (13) with (17) and a 7th-order
dissipation based on 6th-order mid-point residuals defined by (29) with ad and al given by (53). For the error terms e1 and e2

in (56), (58) be Oðh6Þ, we impose
b� a ¼ 1
6
;

b
6
� c ¼ 1

30
ð66Þ
so that
e1 ¼
1

30
1

70
� c

� �
dx6f7x þOðdx8Þ
and similarly for e2. By using the relations (57), (59) and the expansion (54), we obtain:
~r1 ¼ �
dx6

2800
f7x þ

1
30

1
70
� c

� �
dy6g7y þOðh

8Þ

~r2 ¼ �
dy6

2800
g7y þ

1
30

1
70
� c

� �
dx6f7x þOðh8Þ

ð67Þ
Inserting (67) in (20), we get the effective RBC7 dissipation term for unsteady problems:
~d ¼ �j½U1ðdx7f7x þ vdxdy6g7yÞ�x � j½U2ðdy7g7y þ vdydx6f7xÞ�y þOðh
9Þ ð68Þ
with the coefficients
j ¼ 1
5600

; v ¼ 280
3

c � 1
70

� �
:

5. The v-criterion for dissipation

5.1. Dissipation criterion

The effective dissipation term ~d induced by the discretization of the second-order partial differential operator (38) has
been identified through the above expressions (62) for RBC3, (65) for RBC5 and (68) for RBC7. Owing to the residual-based
structure of the dissipation, these expressions contain no time derivative. In some sense, the time derivatives have been re-
placed by space derivatives because the exact residual r and its derivatives are null everywhere.

The dissipation expressions (62), (65) and (68) can be cast in a general form. Consider a RBC2p�1 scheme and denote par-
tial derivatives as
fqx ¼
@qf
@xq

; gqy ¼
@qg
@yq

; q ¼ 2p� 1;
the dissipation term is of the form:
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~d ¼ dq þOðhqþ2Þ ð69Þ
with
dq ¼ ð�1Þp�1j dx½U1ðdxq�1fqx þ vdyq�1gqyÞ�x þ dy½U2ðdyq�1gqy þ vdxq�1fqxÞ�y
n o

ð70Þ
where j > 0 and v are two constant coefficients depending on the order q of the scheme.
To determine whether the multidimensional operator (70) is really dissipative or not, we proceed as in Section 2.4 for the

operator dsteady. Considering the linear scalar case, (70) reduces to
dq ¼ Dqw
with the linear partial differential operator:
Dq ¼ ð�1Þp�1j dx2p�1U1A
@2p

@x2p
þ vdxdy2p�2U1B

@2p

@x@y2p�1 þ dy2p�1U2B
@2p

@y2p
þ vdydx2p�2U2A

@2p

@y@x2p�1

 !

which contains the highest derivatives in (70).

All the derivatives in Dq being even, its Fourier symbol is real. It is denoted by bDqðn;gÞ, where n and g are the wave num-
bers (Fourier variables).

Again, by dissipation (in the broad sense), we mean:
8n 2 R; 8g 2 R; bDqðn;gÞ 6 0: ð71Þ
Theorem 5.1 (v-criterion). The operator (70) is dissipative for any order q ¼ 2p� 1 (p P 2), any advection direction (A;B) and
any functions U1;U2 satisfying the conditions (34) if and only if v ¼ 0.
Proof. Since the Fourier symbol of a derivative like @2p=@x@y2p�1 is ð�1Þpng2p�1, we get:
bDq ¼ �jdx2p�1 U1An2p þ v dy
dx

� �2p�2

U1Bng2p�1 þ v dy
dx

� �
U2An2p�1gþ dy

dx

� �2p�1

U2Bg2p

" #
:

� For A ¼ B ¼ 0 (no advection), then bDq ¼ 0.
� For A ¼ 0 and B – 0 (1-D advection), then from (20) U1 ¼ 0;U2B P 0 and
bDq ¼ �jdy2p�1U2Bg2p

6 0:
� Now for A – 0; bDq can be written as:
bDq ¼ �jdx2p�1U1An2pD
with
D ¼ 1þ v dx
dy

B
A

k2p�1 þU2

U1
k

� �
þ dx

dy
U2B
U1A

k2p
where k ¼ dyg
dxn.

Using the conditions (34) with the definition (35) of a, we have
dxB
dyA
¼ U2

U1
¼ sgnðABÞa ¼ �a
so that
Dðk; �aÞ ¼ 1þ v�akðk2p�2 þ 1Þ þ �a2k2p
Since U1A is always positive, bDq is negative if and only if
8�a 2 R; 8k 2 R; Dðk; �aÞP 0:
Note that k is a reduced wave number ratio and �a characterizes the advection direction with respect to the mesh. It is not
easy to discuss the sign of D viewed as a polynomial of degree 2p in k. It is better to begin with the dependency on �a. Con-
sidering D as a polynomial of degree 2 in �a, we compute its discriminant
D ¼ v2k2ðk2p�2 þ 1Þ2 � 4k2p ¼ k2½vðk2p�2 þ 1Þ þ 2kp�1�½vðk2p�2 þ 1Þ � 2kp�1�
D is positive if and only if D 6 0. For k ¼ 0;D ¼ 0. For k – 0;D 6 0 is tantamount to:
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� 2jkjp�1

1þ k2p�2 6 v 6 2jkjp�1

1þ k2p�2
Since the lower and upper bounds of v tend to zero as k tends to infinity, the above condition can be satisfied for all real
numbers k if and only if v ¼ 0. h

5.2. Interpretation of the v-criterion

We now try to understand the meaning of the dissipation condition v ¼ 0. When it holds, the mixed derivatives vanish
and the dissipation operator reduces to
dq ¼ ð�1Þp�1j½dxqðU1fqxÞx þ dyqðU2gqyÞy�; q ¼ 2p� 1 ð72Þ
which is precisely the result obtained in the partial analysis of Section 3 where we only took into account the x-discretization
in ~r1 and the y-discretization in ~r2. This means that the effect of the complementary discretization comes at a higher order in
the expansion of ~d. To ensure dissipation, the derivative gy in the mid-point residual ~r1 (resp. fx in ~r2) should be approximated
at a higher order than necessary to get the accuracy required for the mid-point residual. Practically, the mid-point residual ~r1

of RBCq scheme (q ¼ 2p� 1) uses approximations of order 2p� 2 for fx and of order 2p for gy. The latter is nothing but the
one used in the main residual ~r. For the mid-point residual ~r2, the roles of fx and gy are exchanged.

Fortunately, this extra accuracy for half of the dissipation terms is achieved without extending the scheme stencil.

5.3. Application of the v-criterion to RBC3

The mid-point residuals of the RBC3 scheme are defined by (61) and depend on the parameter b. Since v ¼ 2ð6b� 1Þ for
RBC3, the condition v ¼ 0 for dissipation requires
b ¼ 1
6

ð73Þ
For this value of b; gy in ~r1 and fx in ~r2 are approximated at order 4. Thus, the simplest choice b ¼ 0 should not be used for
unsteady problems. However, the correct choice (73) does not extend the scheme stencil.

5.4. Application of the v-criterion to RBC5 and RBC7

The mid-point residuals of the RBC5 and RBC7 schemes are defined by (29) with
ad ¼ al þ 1
12

ð74Þ
and
b� a ¼ 1
6
:

For RBC5, al – 1=10. In addition, the condition v ¼ 0 for dissipation gives
b
6
� c ¼ 1

30
;

that is
a ¼ 1
30
þ 6c; b ¼ 1

5
þ 6c: ð75Þ
When (75) holds, gy in ~r1 and fx in ~r2 are approximated at order 6. Note that the correct dissipation depends on two param-
eters (al and c), but the dissipation coefficient j in (65) depends only on al (that should be strictly lower than 1/10).

In the previous works [4,5], the following coefficients were used:
al ¼ 1
12

; ad ¼ 1
6
; a ¼ 1

10
; b ¼ 4

15
; c ¼ 1

90
: ð76Þ
They happen to satisfy (74) and (75).
Another correct choice satisfying the same conditions and producing the same dissipation (same al) for RBC5 is:
al ¼ 1
12

; ad ¼ 1
6
; a ¼ 1

30
; b ¼ 1

5
; c ¼ 0: ð77Þ
It is simpler because the operators d4
1 and d4

2 vanish in ~r1 and ~r2.
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Finally for RBC7, the coefficients are given by (74) and (75) along with al ¼ 1=10. Here the condition v ¼ 0 for dissipation
gives c ¼ 1=70, and a unique set of coefficients is found, leading to a dissipative RBC7 scheme. This is:
al ¼ 1
10

; ad ¼ 11
60

; a ¼ 5
42

; b ¼ 2
7
; c ¼ 1

70
: ð78Þ
Here, gy in ~r1 and fx in ~r2 are approximated at order 8. Note that the coefficients are different from those used in [4,5] for
RBC7, that were:
al ¼ 1
10

; ad ¼ 11
60

; a ¼ 1
30

; b ¼ 1
5
; c ¼ 0: ð79Þ
Actually, the coefficients (79) do not ensure dissipation to RBC7 for all flow conditions.

6. Extension to 3-D

6.1. Dissipation criterion in 3-D

Consider now the three-dimensional hyperbolic system
wt þ fx þ gy þ ez ¼ 0 ð80Þ
where e ¼ eðwÞ is the flux component in the z-direction and C ¼ de=dw. Using difference and average operators d3 and l3 on
the discrete axis zl ¼ ldz, the residual-based scheme reads:
~rj;k;l ¼ ~dj;k;l ð81Þ
where the main residual ~r is a space-centered approximation of the exact residual r (the left-hand side of (80)) and ~d is the
dissipation term
~dj;k;l ¼
1
2
½d1ð/1 ~r1Þ þ d2ð/2 ~r2Þ þ d3ð/3 ~r3Þ�j;k;l ð82Þ
which approximates:
d ¼ dx
2
ð/1rÞx þ

dy
2
ð/2rÞy þ

dz
2
ð/3rÞz ð83Þ
For steady problems, the time derivative is cancelled into (82) and ~d is consistent with dsteady defined from (83) after replacing
r by
rsteady ¼ fx þ gy þ ez
Conditions on U1;U2 and U3 should be satisfied for the operator dsteady be actually dissipative in the broad sense. For a scalar
problem, these conditions are found to be
U1A P 0; U2B P 0; U3C P 0;
dxU1B ¼ dyU2A; dxU1C ¼ dzU3A:

ð84Þ
With the following notations:
U1 ¼ sgnðAÞ/; U2 ¼ sgnðBÞw; U3 ¼ sgnðCÞf;

a ¼ dxjBj
dyjAj ; b ¼ dxjCj

dzjAj ;
the dissipation conditions (84) for dsteady become
/ P 0; w ¼ a/; f ¼ b/: ð85Þ
An optimal choice is
/ ¼min 1;
1
a
;
1
b

� �
¼ min 1;

dyjAj
dxjBj ;

dzjAj
dxjCj

� �
;

w ¼min 1;a;
a
b

� �
¼min 1;

dxjBj
dyjAj ;

dzjBj
dyjCj

� �
;

f ¼ min 1;b;
b
a

� �
¼min 1;

dxjCj
dzjAj ;

dyjCj
dzjBj

� �
:

ð86Þ
For hyperbolic systems, U1;U2 and U3 are matrix functions defined from the above relations by following a process perfectly
similar to the one described in Section 2.4 for the bidimensional case.
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To construct and analyse the dissipation term (82), we discretize the mid-point residuals ~r1; ~r2 and ~r3 in two stages as in
the 2-D case. First, we discretize ~rp in the pth-direction only. For instance for ~r1, this leads to the partially discrete residual
ð ~r1
xÞjþ1

2;k;l
¼ Nl

1l1ðwt þ gy þ ezÞ þ Nd
1
d1f
dx

� �
jþ1

2;k;l
where the operator polynomials Nl
1 and Nd

1 are still defined by (23) with m ¼ 1. Clearly, the expansions made in Section 3.1
remains valid with the new definition of v:
v ¼ wt þ gy þ ez:
As a result the expansions of ~r1
x and ~r2

y are unchanged in 3-D and we just have to introduce a similar expansion for ~r3
z.

Then in the second stage, we proceed as in Section 4 to complete the space discretization, which requires to introduce a
Pade approximation for ez:
N3
d3l3e

dz
¼ D3ðez þ e3Þ; e3 ¼ Oðdz2p�2Þ ð87Þ
where N3 and D3 are defined by (26) for m ¼ 3 and e3 is the error term.
After applying the operator product D2D3 to all the terms involved in ~r1, we define:
ð ~r1Þjþ1
2;k;l
¼ Nl

1l1 D2D3wt þ D3N2
d2l2g

dy
þ D2N3

d3l3e
dz

� �
þ Nd

1D2D3
d1f
dx

� �
jþ1

2;k;l
ð88Þ
and similarly:
ð ~r2Þj;kþ1
2;l
¼ Nl

2l2 D3D1wt þ D3N1
d1l1f

dx
þ D1N3

d3l3e
dz

� �
þ Nd

2D3D1
d2g
dy

� �
j;kþ1

2;l

ð89Þ

ð ~r3Þj;k;lþ1
2
¼ Nl

3l3 D1D2wt þ D2N1
d1l1f

dx
þ D1N2

d2l2g
dy

� �
þ Nd

3D1D2
d3e
dz

� �
j;k;lþ1

2

ð90Þ
A Taylor expansion of ~r1 can be easily obtained by noting that the formulas (56) and (87) yield
D3N2
d2l2g

dy
¼ D2D3ðgy þ e2Þ; D2N3

d3l3e
dz

¼ D2D3ðez þ e3Þ
so that ~r1 is related to ~r1
x by
~r1 ¼ D2D3½ ~r1
x þ Nl

1l1ðe2 þ e3Þ�:
With the same arguments as in the 2-D case, we can reduce this relation to
~r1 ¼ ~r1
x þ l1ðe2 þ e3Þ þ Oðh2pÞ
and similar expressions for ~r2 and ~r3, the error e3 being quite similar to the error e1 and e2.
Finally, we easily find the general form of the dissipation in 3-D. With the same notations as in Section 5.1, the dissipation

of a RBCq scheme (q ¼ 2p� 1) is given by (69) with
dq ¼ ð�1Þp�1jfdx½U1ðdxq�1fqx þ vdyq�1gqy þ vdzq�1eqzÞ�x þ dy½U2ðdyq�1gqy þ vdzq�1eqz þ vdxq�1fqxÞ�y
þ dz½U3ðdzq�1eqz þ vdxq�1fqx þ vdyq�1gqyÞ�zg ð91Þ
and exactly the same coefficients j and v as in 2-D (these coefficients depend only of the order q of the RBCq scheme).
The definition (71) of dissipation is unchanged except by the adding of a third wave number.

Theorem 6.1 (v-criterion). The operator (91) is dissipative for any order q ¼ 2p� 1 (p P 2), any advection direction (A;B;C)
and any functions U1;U2, U3 satisfying the conditions (84) if and only if v ¼ 0.
Proof. The condition v ¼ 0 is sufficient for dissipation since when it holds, the operator dq has no crossed derivatives and
reads
dq ¼ ð�1Þp�1jfdxqðU1fqxÞx þ dyqðU2gqyÞy þ dzqðU3eqzÞzg ð92Þ
which is always dissipative provided U1A P 0;U2B P 0 and U3C P 0.
The condition v ¼ 0 is also necessary since it does in a 2-D situation as we have shown in Section 5.
The above v-criterion can be interpreted similarly as in 2-D: a RBCq scheme (q ¼ 2p� 1) satisfying this condition has a

mid-point residual ~r1 (resp. ~r2; ~r3) in which the derivative fx (resp. gy; ez) is approximated at order 2p� 2 and the two other
derivatives are approximated at order 2p. h
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6.2. Application of the v-criterion to RBC3 in 3-D

In 3-D, the RBC3 dissipation involves 3� 3� 3-points and is given by (82) with a 2� 3� 3-point residual ð ~r1Þjþ1
2;k;l

defined
as:
~r1 ¼ ðI þ bd2
2ÞðI þ bd2

3Þ l1wt þ
d1f
dx

� �
þ ðI þ bd2

3Þ
d2l2g

dy
þ ðI þ bd2

2Þ
d3l3e

dz
ð93Þ
along with a 3� 2� 3-point residual ð ~r2Þj;kþ1
2;l

and a 3� 3� 2-point residual ð ~r3Þj;k;lþ1
2

deduced from (93) by circular permu-
tations of the subscripts 1,2,3, of the flux components f, g, e and of the space steps dx; dy; dz.

Since the coefficient v is the same in 3-D as in 2-D, the dissipation condition is again (73), which sets the only parameter
b.

6.3. Application of the v-criterion to RBC5 and RBC7 in 3-D

The 5� 5� 5-point RBC5 and RBC7 schemes are defined by (82) with
~r1 ¼ ðI þ bd2
2 þ cd4

2ÞðI þ bd2
3 þ cd4

3Þ ðI þ ald2
1Þl1wt þ ðI þ add2

1Þ
d1f
dx

� �
þ ðI þ ald2

1Þl1 ðI þ bd2
3 þ cd4

3ÞðI þ ad2
2Þ

d2l2g
dy

þ ðI þ bd2
2 þ cd4

2ÞðI þ ad2
3Þ

d3l3e
dz

� �
ð94Þ
and similar expressions for ~r2 and ~r3 deduced by circular permutations of the subscripts, the flux components and the space
steps.

The coefficients corresponding to the RBC5 dissipation satisfying the condition v ¼ 0 are given by (74) and (75). They still
depend on the two parameters al and c. The analogous coefficients for RBC7 are uniquely set by (78).

7. Numerical experiments

In the following, we carry out some numerical tests to check the effect of satisfying or not the v-criterion. We consider the
RBC3 scheme with a dissipation operator corresponding to b ¼ 0 (v-criterion violated) or b ¼ 1=6 (v-criterion satisfied) and
the RBC7 scheme with the coefficients (79) associated to c ¼ 0 (v-criterion violated) or the coefficients (78) associated to
c ¼ 1=70 (v-criterion satisfied).

For the present computations, the time derivative in the main residual and in the mid-point residuals is discretized by a
linear multistep method of order two, which is A-stable -see Formula (19). Such a method being fully implicit, it is solved by
using a dual-time stepping approach.

7.1. Diagonal advection of a sine wave

In the proof of Theorem 5.1, we have found that the multidimensional dissipation property is equivalent to the positivity
of the functionDðk; �aÞ. Consider the simple case of an advection directed in the first mesh diagonal, that is �a ¼ 1 and consider
any sinusoïdal wave propagating along this diagonal, that is dyg ¼ dxn, or k ¼ 1. Then
Dð1;1Þ ¼ 2ð1þ vÞ
for any order of the RBC scheme.
Clearly Dð1;1Þ is positive for v ¼ 0, but it is negative for the values corresponding to RBC3 (b ¼ 0) and RBC7 (c ¼ 0) as

summarized in Table 1. So this diagonal advection is an interesting situation to investigate numerically.
We thus consider the initial-value problem:
wt þwx þwy ¼ 0
wðx; y;0Þ ¼ sinð2pðxþ yÞÞ; �1 6 x 6 1; �1 6 y 6 1;




with periodic boundary conditions. The initial condition is shown on Fig. 2. In the diagonal direction, the wavelength is

ffiffiffi
2
p

=2
and the advection speed is

ffiffiffi
2
p

. The computational domain ½�1;1�2 is discretized by 25 � 25 square cells (dx ¼ dy ¼ 0:08),
which corresponds to 12.5 points per wavelength. The time step is rather small: Dt=dx ¼ 0:05. The time evolution of the
amplitude is notably amplified when the v-criterion is violated as shown in Fig. 3. This amplification is faster with RBC7 than
with RBC3. On the contrary the sine wave is damped out when the v-criterion is satisfied. The damping is very small for
RBC7: 1.6% after 5000 time-iterations (t ¼ 20), corresponding to a diagonal advection over a distance of 40 wavelengths.

7.2. Converging cylindrical shock

When the v-criterion is violated in an RBC scheme, the lack of dissipation occurs in some oblique flow directions. So, we
consider a test case involving all the flow directions and a large range of wave numbers, that is a 2-D simulation of a con-



Table 1
Dissipation characteristics for a diagonal advection.

j v Dð1;1Þ

RBC3 (b ¼ 0) 1
24

�2 �2

RBC3 (b ¼ 1
6) 1

24
0 2

RBC7 (c ¼ 0) 1
5600 � 4

3 � 2
3

RBC7 (c ¼ 1
70) 1

5600
0 2
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Fig. 2. Initial wave on the 25 � 25 mesh.
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verging cylindrical shock on a uniform Cartesian mesh. Of course, this axisymmetric problem could be solved more easily as
a 1-D problem in polar coordinates. Here, the 2-D Euler equations, for a perfect gas with a specific heat ratio c ¼ 1:4, are
solved in a square domain ½�0:5;0:5�2.

At time t ¼ 0, a cylindrical shock (satisfying the Rankine-Hugoniot relations) lies on a circle of center ðx; yÞ ¼ ð0;0Þ and
radius r0 ¼ 0:25. Inside the cylindrical shock (state 0), the fluid is at rest and at pressure p0. The pressure just behind the
shock is p1 ¼ 2:4p0 at t ¼ 0. Outside the cylindrical shock, the initial state corresponds to a steady converging flow, i.e.
the flow at a radius r > r0 is related to the state 1 just behind the shock by the conservation of mass (qVr ¼ q1V1r0 where
q is the density and V the radial velocity), the conservation of total enthalpy and of the entropy. For improving the initial
representation of the shock on the Cartesian mesh, the vector w of conservative variables is defined as follows in the mesh
cells intersecting the shock:
w� ¼ ð1� hÞw0 þ hw1; 0 6 h 6 1
where hdxdy is the cell area fraction in state 1.
During the evolution, the cylindrical shock increases in strength as it converges towards the axis. When the shock reaches

the axis, it is reflected as a divergent shock. At the very instant of reflection, the pressure at the axis becomes infinite in the
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Fig. 4. Pressure along the x-axis at different times for RBC schemes satisfying the v-criterion.
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Euler model. To avoid a numerical difficulty, the Cartesian mesh is set so that the axis corresponds to a cell vertex and not to
a cell center. This prevents the computation of any unphysical quantity on the axis. Note also that the outside boundary is
not affected by the perturbations coming from the shock motion in the duration of the present simulation.

Chisnell [22] gave in 1957 an analytical estimation of the pressure behind a moving cylindrical shock, the theoretical
arguments of which were improved by Whitham [23]. According to this theory, the Mach number M of the shock wave (rel-
ative to the fluid at rest) at radius r is solution of the differential equation:
dM
dr
¼ �1

r
ðM2 � 1Þ:KðMÞ

2M
ð95Þ
where
KðMÞ ¼ 2 1þ 2
cþ 1

1� l2

l

� �
2lþ 1þ 1

M2

� �� ��1
l ¼ ðc� 1ÞM2 þ 2
2cM2 � ðc� 1Þ

" #1
2

:

For c ¼ 1:4, the function KðMÞ decreases slowly from 0:5 for M ¼ 1 to 14=ð17þ 7
ffiffiffi
7
p
Þ 	 0:394 for M !1. Starting from the

initial condition M0 ¼ Mðr0Þ, the Eq. (95) can easily be solved numerically with a high accuracy. An exact solution is also
available [22], but its expression is very complicated and defined in the form r ¼ rðMÞ.

The pressure behind the shock in motion is deduced from M ¼ MðrÞ using the Rankine–Hugoniot relations:
p1 ¼
2cM2 � ðc� 1Þ

cþ 1
p0 ð96Þ
The converging cylindrical shock problem is solved by the RBC schemes on a 800 � 800 Cartesian mesh with Dt=dx ¼ 0:21.
When the v-criterion is violated, the computation fails after a few time iterations (one iteration for RBC3 with b ¼ 0 and 26
for RBC7 with c ¼ 0). When the v-criterion is satisfied, the computation succeeds, even after the shock reflection on the axis.
In this case, the pressure profiles along the x-axis are shown on Fig. 4 for the RBC3, RBC5 and RBC7 schemes at different
times, together with the analytical pressure behind the shock deduced from (95), (96). The agreement between the numer-
ical solution and the Chisnell theory is very good. The shape of the converging shock computed by the RBC7 scheme at dif-
ferent times is shown on Fig. 5. This shape has been defined as the isobar lines of level 1

2 ðp1 þ p0Þ at each time. The converging
shock appears to be perfectly circular on the Cartesian mesh. Clearly, Fig. 4 reveals the oscillatory nature of the shock profiles
computed by the present high order schemes, specially by RBC5 and RBC7. It should be noted that the computations have
been achieved by a strict use of the method described in the present paper: there is no limiter, no entropy correction, no
filtering or other additive. In these conditions, it appears that a good design of the dissipative operator allows the calculation
of a difficult test case, even if the discrete shock is oscillatory and could be improved.
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8. Conclusion

A comprehensive study of the dissipation properties of a family of residual-based compact schemes has been presented
for 2-D and 3-D hyperbolic systems of conservation laws. The residual-based numerical dissipation operator has been shown
to be the counterpart of a high-order differential operator based on pure and mixed derivatives of even order. A general cri-
terion (Theorem 5.1 and 6.1) has been established for this operator to be dissipative.

Numerical tests confirm the theoretical results and demonstrate the importance of a well-designed dissipation operator
for numerical simulations in gas dynamics. Specifically, the present residual-based formulation ensures controlled damping
of sine waves propagating along any direction with respect to the computational mesh and with any advection speed. It also
allows the computation of unsteady multidimensional flows with strong shocks without any treatment for shock capturing.
Further work is in progress to investigate the need for a suitable residual-based correction to suppress spurious oscillations
around strong flow discontinuities.

In future works, it might be interesting to consider a more general form of residual-based dissipation based on a space–
time approach. In the two-dimensional case, this consists in adding the new term
Dt
2
½U0ðwt þ fx þ gyÞ�t
to the present dissipation (38) and in discretizing it with a new mid-point residual ð~r0Þ
nþ1

2
j;k . The resulting scheme would be

more complicated, but could have some advantages, notably for increasing time accuracy.
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