1,963 research outputs found
Multiple solutions to a magnetic nonlinear Choquard equation
We consider the stationary nonlinear magnetic Choquard equation
[(-\mathrm{i}\nabla+A(x))^{2}u+V(x)u=(\frac{1}{|x|^{\alpha}}\ast |u|^{p})
|u|^{p-2}u,\quad x\in\mathbb{R}^{N}%] where is a real valued vector
potential, is a real valued scalar potential ,
and . \ We assume that both and are
compatible with the action of some group of linear isometries of
. We establish the existence of multiple complex valued
solutions to this equation which satisfy the symmetry condition where
is a given group homomorphism into the unit
complex numbers.Comment: To appear on ZAM
Valence band spectroscopy in V-grooved quantum wires
We present a combined theoretical and experimental study of the anisotropy in
the optical absorption of V-shaped quantum wires. By means of realistic band
structure calculations for these structures, we show that detailed information
on the heavy- and light-hole states can be singled out from the anisotropy
spectra {\em independently of the electron confinement}, thus allowing accurate
valence band spectroscopy.Comment: To be published in Appl. Phys. Lett. (8 pages in REVTeX, two
postscipt figures
Band gap renormalization in photoexcited semiconductor quantum wire structures in the GW approximation
We investigate the dynamical self-energy corrections of the electron-hole
plasma due to electron-electron and electron-phonon interactions at the band
edges of a quasi-one dimensional (1D) photoexcited electron-hole plasma. The
leading-order dynamical screening approximation is used in the calculation
by treating electron-electron Coulomb interaction and electron-optical phonon
Fr\"{o}hlich interaction on an equal footing. We calculate the
exchange-correlation induced band gap renormalization (BGR) as a function of
the electron-hole plasma density and the quantum wire width. The calculated BGR
shows good agreement with existing experimental results, and the BGR normalized
by the effective quasi-1D excitonic Rydberg exhibits an approximate
one-parameter universality.Comment: 11 pages, 3 figure
An observing system for the collection of fishery and oceanographic data
Fishery Observing System (FOS) was developed as a first and basic step towards fish stock abundance nowcasting/forecasting within the framework of the EU research program Mediterranean Forecasting System: Toward an Environmental Prediction (MFSTEP). The study of the relationship between abundance and environmental parameters also represents a crucial point towards forecasting. Eight fishing vessels were progressively equipped with FOS instrumentation to collect fishery and oceanographic data. The vessels belonged to different harbours of the Central and Northern Adriatic Sea. For this pilot application, anchovy (<I>Engraulis encrasicolus</I>, L.) was chosen as the target species. Geo-referenced catch data, associated with in-situ temperature and depth, were the FOS products but other parameters were associated with catch data as well. MFSTEP numerical circulation models provide many of these data. In particular, salinity was extracted from re-analysis data of numerical circulation models. Satellite-derived sea surface temperature (SST) and chlorophyll were also used as independent variables. Catch and effort data were used to estimate an abundance index (CPUE &ndash; Catch per Unit of Effort). Considering that catch records were gathered by different fishing vessels with different technical characteristics and operating on different fish densities, a standardized value of CPUE was calculated. A spatial and temporal average CPUE map was obtained together with a monthly mean time series in order to characterise the variability of anchovy abundance during the period of observation (October 2003&ndash;August 2005). In order to study the relationship between abundance and oceanographic parameters, Generalized Additive Models (GAM) were used. Preliminary results revealed a complex scenario: the southern sector of the domain is characterised by a stronger relationship than the central and northern sector where the interactions between the environment and the anchovy distribution are hidden by a higher percentage of variability within the system which is still unexplained. <br><br> GAM analysis showed that increasing the number of explanatory variables also increased the portion of variance explained by the model. Data exchange and interdisciplinary efforts will therefore be crucial for the success of this research activity
Linear and nonlinear optical properties of realistic quantum-wire structures: The dominant role of Coulomb correlation
A systematic analysis of the linear and nonlinear optical properties of realistic quantum wires is presented. The proposed theoretical approach, based on a set of generalized semiconductor Bloch equations, provides a full three-dimensional multisubband description of carrier-carrier correlation for any profile of the confinement potential, thus allowing a direct comparison with experiments on available structures. In agreement with previous investigations based on simplified one-dimensional models, our analysis shows that, also for realistic quantum-wire structures, electron-hole Coulomb correlation completely removes the one-dimensional band-edge singularities from the linear-absorption spectra. Moreover, we find that this effect is present also at high densities (corresponding to gain regimes) and contributes significantly in suppressing the ideal sharp features of the free-carrier density of states. The multisubband nature of available state-of-the-art structures is found to play a dominant role in determining the overall spectral shape in the whole density range
Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing
In this Rapid Communication we propose to use GaN-based quantum dots as building blocks for solid-state quantum-computing devices. The existence of a strong built-in electric field induced by the spontaneous polarization and by the piezoelectricity is exploited to generate entangled few-exciton states in coupled quantum dots without resorting to external fields. More specifically, we shall show how the built-in field induces intrinsic exciton-exciton coupling, which can be used to realize basic quantum information processing on a sub-picosecond time scale
Ionization degree of the electron-hole plasma in semiconductor quantum wells
The degree of ionization of a nondegenerate two-dimensional electron-hole
plasma is calculated using the modified law of mass action, which takes into
account all bound and unbound states in a screened Coulomb potential.
Application of the variable phase method to this potential allows us to treat
scattering and bound states on the same footing. Inclusion of the scattering
states leads to a strong deviation from the standard law of mass action. A
qualitative difference between mid- and wide-gap semiconductors is
demonstrated. For wide-gap semiconductors at room temperature, when the bare
exciton binding energy is of the order of T, the equilibrium consists of an
almost equal mixture of correlated electron-hole pairs and uncorrelated free
carriers.Comment: 22 pages, 6 figure
Dominance of charged excitons in single quantum dot photoluminescence spectra
Single InxGa1-xAs/GaAs quantum dot photoluminescence spectra, obtained by low-temperature near-field scanning optical microscopy, are compared with theoretically derived optical spectra. The spectra show shell filling as well as few-particle fine structure associated with neutral and charged multiexcitons, in good agreement with the many-body calculations. There appears to be a greater tendency to charged-exciton formation, which is discussed in terms of the high diffusivity of photogenerated electrons
Quasiparticle properties of a coupled quantum wire electron-phonon system
We study leading-order many-body effects of longitudinal optical (LO) phonons
on electronic properties of one-dimensional quantum wire systems. We calculate
the quasiparticle properties of a weakly polar one dimensional electron gas in
the presence of both electron-phonon and electron-electron interactions. The
leading-order dynamical screening approximation (GW approximation) is used to
obtain the electron self-energy, the quasiparticle spectral function, and the
quasiparticle damping rate in our calculation by treating electrons and phonons
on an equal footing. Our theory includes effects (within the random phase
approximation) of Fermi statistics, Landau damping, plasmon-phonon mode
coupling, phonon renormalization, dynamical screening, and impurity scattering.
In general, electron-electron and electron-phonon many-body renormalization
effects are found to be nonmultiplicative and nonadditive in our theoretical
results for quasiparticle properties.Comment: 21 pages, Revtex, 12 figures enclose
Thermal ionization of excitons in V-shaped quantum wires
The exciton-to-free-carrier transition in GaAs and In_xGa_{1-x}As V-shaped quantum wires is revealed by means of temperature-dependent magnetoluminescence experiments. The experimental results are in excellent agreement with the diamagnetic shift obtained from a solution of the full two-dimensional Schrödinger equation for electrons and holes including magnetic-field and excitonic effects. In the GaAs wires, the exciton-to-free-carrier transition is found to occur at temperature consistent with the exciton binding energies. In the In_xGa_{1-x}As wires the diamagnetic shift of the luminescence is found to be free-carrier-like, independent of temperature, due to the weakening of the exciton binding energy induced by the internal piezoelectric field
- …
