220 research outputs found

    Development and calibration of a 1D thermo-fluid dynamic model of ventilation in tunnels

    Get PDF
    In complex, large civil infrastructures where ventilation has a crucial role for the safety of users in both normal operation and hazardous scenarios, the correct prediction of flow and heat transfer parameters is of fundamental importance. While full 3D simulation is applicable only to a limited extent, and the resort to 1D modeling is a common practice in both design and evaluation phases, the limitation of such models lies in the choice of transfer parameters, such as friction loss coefficients and heat transfer coefficients. In this work, an original approach based on the Finite Volume integration of the 1D flow and energy equations is presented. Such equations are to be solved on a network of ducts, representing the ventilation system in the 11.6 km long Mont Blanc Tunnel with a spatial resolution of 10 m. A preliminary calibration of a set of friction loss coefficients against a rich experimental dataset collected throughout a dedicated set of in situ tests is of particular concern here, as it is carried out by means of genetic optimization algorithms. Predictions of the flow field are in remarkable agreement with the experimental data, with an overall RMS error of - 0.42 m/s. Further refinements and possible parameter choices are also discussed

    An integrated approach for the analysis and modeling of road tunnel ventilation. Part I: Continuous measurement of the longitudinal airflow profile

    Get PDF
    The knowledge of the flow field inside road tunnels under normal operation, let alone fire conditions, is only approximate and partial. The reason is that while the full three-dimensional, unsteady problem is out of reach of numerical methods, on the other hand accurate measurement of the airflow in road and railway tunnels constitutes an extremely demanding task. The present work, structured as a twofold study, takes up the challenge and proposes an original integrated experimental and numerical approach for the analysis and modeling of flow inside a road tunnel and its ventilation systems, aiming at defining a methodology for the creation of “digital twins” of the system itself, on which advanced ventilation and smoke control strategies can be tested and fine-tuned. In this first part, an innovative experimental facility for the continuous acquisition of the longitudinal velocity profile along the whole length of a road tunnel has been designed and built. The facility consists of a survey rake with five bidirectional vane anemometers, which is mounted on a small electric vehicle that can travel through the tunnel at constant speed. This paper reports the design procedure of the measurement facility, with particular focus on the conception and realization of the vehicle carrying the survey rake. Results of the first experimental campaign carried out under the 11611 meters long Mont Blanc road tunnel are presented to corroborate the validity of the approach adopted and the accuracy of the measurement chain

    An integrated approach for the analysis and modeling of road tunnel ventilation. Part II: Numerical model and its calibration

    Get PDF
    The present work represents the second and final part of a twofold study aiming at the definition and validation of an integrated methodology for the analysis and modeling of road tunnel ventilation systems. A numerical approach is presented, based on the Finite Volume integration of the 1D mechanical and thermal energy conservation equations on a network of ducts, representing the ventilation system of the 11.6 km long Mont Blanc Tunnel. The set of distributed and concentrated loss coefficients, representing dissipation of mechanical energy by friction in each part of the ventilation system, is calibrated against a rich experimental dataset, collected throughout a dedicated set of in situ tests and presented in the first part of the work. The calibration of the model is carried out by means of genetic optimization algorithms. Predictions of the flow field using the calibrated parameters are in remarkable agreement with the experimental data, with an overall RMS error of \ub1 0.27 m/s, i.e. of the same order of the accuracy of the measurement probes. Further validation against a selection of field data recorded by the tunnel monitoring and control system is brought forward, highlighting the robustness and potential general applicability of the proposed approach

    Measurements and scaling of buoyancy-induced flows in ventilated tunnels

    Get PDF
    We investigate the ventilation conditions required to control the propagation of smoke, produced by a tunnel fire, in the presence of two inertial forcings: a transverse extraction system and a longitudinal flow. For that purpose, we performed a series of experiments in a reduced-scale tunnel, using a mixture of air and helium to simulate the release of hot smoke during a fire. Experiments were designed to focus on the ventilation flows that allow the buoyant release to be confined between two adjacent extraction vents. Different source conditions, in terms of density and velocity of the buoyant release, were analysed along with different vent configurations. Experiments allowed us to quantify the increase of the extraction velocity needed to confine the buoyant smoke, overcoming the effect of an imposed longitudinal velocity. Vents with a rectangular shape, and spanning over the whole tunnel width, provide the best performance. Finally, we studied the stratification conditions of the flow, individuating four regimes. Interestingly, when the stratification conditions fade out, as both the longitudinal flow and vertical extraction flows increase, the flow dynamics becomes almost independent of the forcing induced by the presence of buoyant smoke, which eventually acts as a passive scalar transported by the flow

    Process development for manufacturing of cellular structures with controlled geometry and properties

    Get PDF
    This study presents experimental results on the behaviour of aluminium alloy metal structures and foams manufactured by lost-wax casting and using 3D printed components for internal structure definition. Results for tensile tests, metallurgical properties, surface quality and geometry tolerances were obtained and discussed. The analysis focused on development geometries, used for adjusting manufacturing parameters and prototype geometries intended for geometrical and mechanical validation. The results are indicative of the viability of the method for producing foam structures suitable for mechanical loading.The authors are grateful to the Portuguese Foundation for Science and Technology (FCT) who financially supported this work, through the project PTDC/EME-PME/115668/2009.info:eu-repo/semantics/publishedVersio

    Allergen immunotherapy in MASK-air users in real-life: Results of a Bayesian mixed-effects model

    Full text link
    Background Evidence regarding the effectiveness of allergen immunotherapy (AIT) on allergic rhinitis has been provided mostly by randomised controlled trials, with little data from real-life studies. Objective To compare the reported control of allergic rhinitis symptoms in three groups of users of the MASK-air(R) app: those receiving sublingual AIT (SLIT), those receiving subcutaneous AIT (SCIT), and those receiving no AIT. Methods We assessed the MASK-air(R) data of European users with self-reported grass pollen allergy, comparing the data reported by patients receiving SLIT, SCIT and no AIT. Outcome variables included the daily impact of allergy symptoms globally and on work (measured by visual analogue scales-VASs), and a combined symptom-medication score (CSMS). We applied Bayesian mixed-effects models, with clustering by patient, country and pollen season. Results We analysed a total of 42,756 days from 1,093 grass allergy patients, including 18,479 days of users under AIT. Compared to no AIT, SCIT was associated with similar VAS levels and CSMS. Compared to no AIT, SLIT-tablet was associated with lower values of VAS global allergy symptoms (average difference = 7.5 units out of 100; 95% credible interval [95%CrI] = -12.1;-2.8), lower VAS Work (average difference = 5.0; 95%CrI = -8.5;-1.5), and a lower CSMS (average difference = 3.7; 95%CrI = -9.3;2.2). When compared to SCIT, SLIT-tablet was associated with lower VAS global allergy symptoms (average difference = 10.2; 95%CrI = -17.2;-2.8), lower VAS Work (average difference = 7.8; 95%CrI = -15.1;0.2), and a lower CSMS (average difference = 9.3; 95%CrI = -18.5;0.2). Conclusion In patients with grass pollen allergy, SLIT-tablet, when compared to no AIT and to SCIT, is associated with lower reported symptom severity. Future longitudinal studies following internationally-harmonised standards for performing and reporting real-world data in AIT are needed to better understand its 'real-world' effectiveness

    Real-world data using mHealth apps in rhinitis, rhinosinusitis and their multimorbidities

    Full text link
    Digital health is an umbrella term which encompasses eHealth and benefits from areas such as advanced computer sciences. eHealth includes mHealth apps, which offer the potential to redesign aspects of healthcare delivery. The capacity of apps to collect large amounts of longitudinal, real-time, real-world data enables the progression of biomedical knowledge. Apps for rhinitis and rhinosinusitis were searched for in the Google Play and Apple App stores, via an automatic market research tool recently developed using JavaScript. Over 1500 apps for allergic rhinitis and rhinosinusitis were identified, some dealing with multimorbidity. However, only six apps for rhinitis (AirRater, AllergyMonitor, AllerSearch, Husteblume, MASK-air and Pollen App) and one for rhinosinusitis (Galenus Health) have so far published results in the scientific literature. These apps were reviewed for their validation, discovery of novel allergy phenotypes, optimisation of identifying the pollen season, novel approaches in diagnosis and management (pharmacotherapy and allergen immunotherapy) as well as adherence to treatment. Published evidence demonstrates the potential of mobile health apps to advance in the characterisation, diagnosis and management of rhinitis and rhinosinusitis patients.© 2022 The Authors. Clinical and Translational Allergy published by John Wiley and Sons Ltd on behalf of European Academy of Allergy and Clinical Immunology

    HALT (Hernia Active Living Trial): protocol for a feasibility study of a randomised controlled trial of a physical activity intervention to improve quality of life in people with bowel stoma with a bulge/parastomal hernia

    Get PDF
    Background Parastomal hernia (PSH) can be repaired surgically, but results to date have been disappointing, with reported recurrence rates of 30 to 76%. Other types of intervention are therefore needed to improve the quality of life of people with PSH. One potential intervention is physical activity. We hypothesise that the intervention will increase core activation and control across the abdominal wall at a site of potential weakness and thus reduce the risk of PSH progression. Increases in physical activity will improve body image and quality of life (QoL). Methods Subjects and sample There were approximately 20 adults with a bowel stoma and PSH. People with previous PSH repair will be excluded as well as people who already do core training. Study design This is a feasibility study of a randomised controlled trial with 2 months follow-up, in 2 sites using mixed methods. Stage 1 involves intervention development and in stage 2, intervention and trial parameters will be assessed. Intervention A theoretically informed physical activity intervention was done, targeting people with PSH. Main outcome of feasibility study The main outcome is the decision by an independent Study Steering Committee whether to proceed to a full randomised controlled trial of the intervention. Other outcomes We will evaluate 4 intervention parameters—fidelity, adherence, acceptability and safety and 3 trial parameters (eligible patients’ consent rate, acceptability of study design and data availability rates for following endpoints): I. Diagnosis and classification of PSH II. Muscle activation III. Body composition (BMI, waist circumference) IV. Patient reported outcomes: QoL, body image and physical functioning V. Physical activity; VI. Psychological determinants of physical activity Other data Included are other data such as interviews with all participants about the intervention and trial procedures. Data analysis and statistical power As this is a feasibility study, the quantitative data will be analysed using descriptive statistics. Audio-recorded qualitative data from interviews will be transcribed verbatim and analysed thematically. Discussion The feasibility and acceptability of key intervention and trial parameters will be used to decide whether to proceed to a full trial of the intervention, which aims to improve body image, quality of life and PSH progression. Trial registration ISRCTN1520759

    Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study

    Get PDF
    Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air®, these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air® longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air® data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7 days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age ± SD = 39.1 ± 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms.info:eu-repo/semantics/publishedVersio
    corecore