36 research outputs found

    Bad Nature, Bad Nurture, and Testimony Regarding MAOA and SLC6A4 Genotyping in Murder Trials

    Get PDF
    Recent research—in which subjects were studied longitudinally from childhood until adulthood—has started to clarify how a child’s environment and genetic makeup interact to create a violent adolescent or adult. For example, male subjects who were born with a particular allele of the monoamine oxidase A gene and also were maltreated as children had a much greater likelihood of manifesting violent antisocial behavior as adolescents and adults. Also, individuals who were born with particular alleles of the serotonin transporter gene and also experienced multiple stressful life events were more likely to manifest serious depression and suicidality. This research raises the question of whether testimony regarding a defendant’s genotype, exposure to child maltreatment, and experience of unusual stress is appropriate to present during the guilt or penalty phases of criminal trials, especially when capital punishment is a consideration. The authors present their experience in genotyping criminal defendants and presenting genetic information at criminal trials

    Bad Nature, Bad Nurture, and Testimony Regarding MAOA and SLC6A4 Genotyping in Murder Trials

    Get PDF
    Recent research—in which subjects were studied longitudinally from childhood until adulthood—has started to clarify how a child’s environment and genetic makeup interact to create a violent adolescent or adult. For example, male subjects who were born with a particular allele of the monoamine oxidase A gene and also were maltreated as children had a much greater likelihood of manifesting violent antisocial behavior as adolescents and adults. Also, individuals who were born with particular alleles of the serotonin transporter gene and also experienced multiple stressful life events were more likely to manifest serious depression and suicidality. This research raises the question of whether testimony regarding a defendant’s genotype, exposure to child maltreatment, and experience of unusual stress is appropriate to present during the guilt or penalty phases of criminal trials, especially when capital punishment is a consideration. The authors present their experience in genotyping criminal defendants and presenting genetic information at criminal trials

    Copy-number variation in BMPR2 is not associated with the pathogenesis of pulmonary arterial hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy-number variations (CNVs) are structural variations in the genome involving 1 kb to 3 mb of DNA. CNV has been reported within intron 1 of the <it>BMPR2 </it>gene. We propose that CNV could affect phenotype in familial and/or sporadic pulmonary arterial hypertension (PAH) by altering gene expression.</p> <p>Methods</p> <p>97 human DNA samples were obtained which included 24 patients with familial PAH, 18 obligate carriers (<it>BMPR2 </it>mutation positive), 20 sporadic PAH patients, and 35 controls. Two sets of primers were designed within the CNV, and two sets of control primers were designed outside the CNV. Quantitative PCR was performed to quantify genomic copies of CNV and control sequences.</p> <p>Results</p> <p>A CNV in <it>BMPR2 </it>was present in one African American negative control subject.</p> <p>Conclusion</p> <p>We conclude that the CNV in intron 1 in <it>BMPR2 </it>is unlikely to play a role in the pathogenesis of either familial or sporadic PAH.</p> <p>Trial Registration</p> <p>NIH NCT00091546.</p

    Routine Multiplex Mutational Profiling of Melanomas Enables Enrollment in Genotype-Driven Therapeutic Trials

    Get PDF
    Purpose: Knowledge of tumor mutation status is becoming increasingly important for the treatment of cancer, as mutation-specific inhibitors are being developed for clinical use that target only sub-populations of patients with particular tumor genotypes. Melanoma provides a recent example of this paradigm. We report here development, validation, and implementation of an assay designed to simultaneously detect 43 common somatic point mutations in 6 genes (BRAF, NRAS, KIT, GNAQ, GNA11, and CTNNB1) potentially relevant to existing and emerging targeted therapies specifically in melanoma. Methods: The test utilizes the SNaPshot method (multiplex PCR, multiplex primer extension, and capillary electrophoresis) and can be performed rapidly with high sensitivity (requiring 5–10% mutant allele frequency) and minimal amounts of DNA (10–20 nanograms). The assay was validated using cell lines, fresh-frozen tissue, and formalin-fixed paraffin embedded tissue. Clinical characteristics and the impact on clinical trial enrollment were then assessed for the first 150 melanoma patients whose tumors were genotyped in the Vanderbilt molecular diagnostics lab. Results: Directing this test to a single disease, 90 of 150 (60%) melanomas from sites throughout the body harbored a mutation tested, including 57, 23, 6, 3, and 2 mutations in BRAF, NRAS, GNAQ, KIT, and CTNNB1, respectively. Among BRAF V600 mutations, 79%, 12%, 5%, and 4% were V600E, V600K, V600R, and V600M, respectively. 23 of 54 (43%) patients with mutation harboring metastatic disease were subsequently enrolled in genotype-driven trials. Conclusion: We present development of a simple mutational profiling screen for clinically relevant mutations in melanoma. Adoption of this genetically-informed approach to the treatment of melanoma has already had an impact on clinical trial enrollment and prioritization of therapy for patients with the disease

    A Novel BMPR2 Mutation Associated with Pulmonary Arterial Hypertension in an Octogenarian

    Get PDF
    We describe the case of an 83-year-old man with a family history of pulmonary hypertension (PH) who presented with severe pulmonary arterial hypertension (PAH) and later tested positive for a novel bone morphogenetic protein receptor 2 (BMPR2) gene mutation. To our knowledge, this may be the oldest reported patient with PAH in whom a BMPR2 mutation was initially identified

    Detection of Trypanosoma cruzi DNA within murine cardiac tissue sections by in situ polymerase chain reaction

    No full text
    The use of in situ techniques to detect DNA and RNA sequences has proven to be an invaluable technique with paraffin-embedded tissue. Advances in non-radioactive detection systems have further made these procedures shorter and safer. We report the detection of Trypanosoma cruzi, the causative agent of Chagas disease, via indirect and direct in situ polymerace chain reaction within paraffin-embedded murine cardiac tissue sections. The presence of three T. cruzi specific DNA sequences were evaluated: a 122 base pair (bp) sequence localized within the minicircle network, a 188 bp satellite nuclear repetitive sequence and a 177 bp sequence that codes for a flagellar protein. In situ hybridization alone was sensitive enough to detect all three T. cruzi specific DNA sequences
    corecore