17 research outputs found
The nonstructural protein NSs of Schmallenberg virus is targeted to the nucleolus and induces nucleolar disorganization
Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death
Cartographie des interactions entre protéines du virus de la fièvre catarrhale ovine et protéines cellulaires chez son hôte mammifère et son hôte vecteur.
Bluetongue virus (BTV) is the etiological agent of the bluetongue (BT) disease, a noncontagious arbovirus that affects a wide range of wild and domestic ruminants. It is transmitted by blood-feeding midges of the genus Culicoides. There are currently 27 serotypes described of BTV in the world that are distinguished by their differences in term of pathology/virulence and their capacity to infect and disseminate in their mammalian host(s). The first objective of my thesis project was to identify specific cellular interactions of serotype 8 and 27 to reveal new factors of pathogenicity/virulence and/or cross species barrier. To reach this goal, all the proteins encoded by BTV were used as baits to screen, by ahigh-throughput yeast two-hybrid (Y2H) approach, two complementary DNA libraries originating from hosts naturally infected by BTV : Culicoides and cattle. Therefore, 70 screens were performed to identify a hundred of new virus-host interactions and reveal an enrichment for four cellular processes : mRNA splicing, ribosomes, SUMOylation and apoptosis. This study allowed us to build the first interactome of BTV which continues through multiple biochemical and functional validations of the identified interactions. In parallel to this proteomics work, my second objective was to determine the impact of BTV on the MAPK/ERK pathway, a cellular pathway essential for cell proliferation and differentiation usually modulated during viral infections. In addition to its antagonist role on the type I interferon pathway, we have demonstrated the ability of BTV-NS3 to activate the MAPK/ERK pathway. Indeed, we have demonstrated that NS3 has the ability to increase the level of phosphorylation of ERK1/2 protein and the eIF4E translation factor. This function, which seems to be specific to BTV compared to other orbiviruses, involves the interaction of NS3 with BRAF cellular protein, a MAP3 kinase protein that plays a major role in the regulation of the MAPK/ERK pathway. These results could provide a better understanding of the molecular basis underlying the hijacking of the translation machinery to support virus replication but also constitute a hypothesis to explain the hyperinflammation observed in the BTV infection context.Le virus de la fièvre catarrhale ovine (Bluetongue virus, BTV) est l’agent étiologique de la maladie du même nom, une arbovirose non contagieuse transmise aux ruminants domestiques et sauvages par l’intermédiaire de morsures de moucherons hématophages du genre Culicoides. Il existe actuellement 27 sérotypes décrits de BTV à travers le monde qui se distinguent par les pathologies qu’ils induisent et leur capacité à infecter et se propager chez leur(s) hôte(s) mammifère(s). Le premier objectif de mon projet de thèse visait à identifier les interactions cellulaires spécifiques des sérotypes 8 et 27 pour identifier des facteurs de pathogénicité/virulence et/ou de franchissement de barrière d’espèces. Pour atteindre cetobjectif, l’ensemble des protéines virales du BTV a été criblé par la méthode du doublehybride en levure contre deux banques d’ADN complémentaires, l’une d’origine bovine et l’autre d’origine culicoïde. A l’issue de 70 cribles, une centaine de nouvelles interactions virus-hôtes a été mise en évidence et révèle un enrichissement pour quatre processus cellulaires : l’épissage des ARNm, les ribosomes, la SUMOylation et l’apoptose. Cette étude nous a ainsi permis de réaliser le premier interactome pour le BTV qui se poursuit au travers de multiples validations biochimiques et fonctionnelles des interactions identifiées. En parallèle de ce travail de protéomique, le second objectif de mon projet de thèse a été de déterminer l’impact du BTV sur la voie MAPK/ERK, une voie cellulaire essentielle à la prolifération et différenciation cellulaire et classiquement modulée lors d’infections virales. En plus de son rôle antagoniste sur la voie des interférons de type I, nous avons démontré la capacité de la protéine NS3 de BTV à activer la voie MAPK/ERK. En effet, nous avons démontré que NS3 a la capacité d’augmenter le niveau de phosphorylation des protéines kinases ERK1/2 mais également du facteur de traduction eIF4E. Cette fonction, qui semble être spécifique au BTV par rapport aux autres orbivirus, implique l’interaction de NS3 avec la protéine cellulaire BRAF, une protéine MAP3 kinase jouant un rôle majeur dans l’activation de la voie MAPK/ERK. L’activation de cette voie par NS3 pourrait être un mécanisme de détournement de la traduction cellulaire au profit de celle du virus mais aussi constituer un élément de réponse pour expliquer l’hyper-inflammation observée dans le cas d’une infection par ce virus
Mapping virus-host interactions for bluetongue virus and highlighting a new function carried by NS3 protein
Le virus de la fièvre catarrhale ovine (Bluetongue virus, BTV) est l’agent étiologique de la maladie du même nom, une arbovirose non contagieuse transmise aux ruminants domestiques et sauvages par l’intermédiaire de morsures de moucherons hématophages du genre Culicoides. Il existe actuellement 27 sérotypes décrits de BTV à travers le monde qui se distinguent par les pathologies qu’ils induisent et leur capacité à infecter et se propager chez leur(s) hôte(s) mammifère(s). Le premier objectif de mon projet de thèse visait à identifier les interactions cellulaires spécifiques des sérotypes 8 et 27 pour identifier des facteurs de pathogénicité/virulence et/ou de franchissement de barrière d’espèces. Pour atteindre cet objectif, l’ensemble des protéines virales du BTV a été criblé par la méthode du double-hybride en levure contre deux banques d’ADN complémentaires, l’une d’origine bovine et l’autre d’origine culicoïde. A l’issue de 70 cribles, une centaine de nouvelles interactions virus-hôtes a été mise en évidence et révèle un enrichissement pour quatre processus cellulaires : l’épissage des ARNm, les ribosomes, la SUMOylation et l’apoptose. Cette étude nous a ainsi permis de réaliser le premier interactome pour le BTV qui se poursuit au travers de multiples validations biochimiques et fonctionnelles des interactions identifiées. En parallèle de ce travail de protéomique, le second objectif de mon projet de thèse a été de déterminer l’impact du BTV sur la voie MAPK/ERK, une voie cellulaire essentielle à la prolifération et différenciation cellulaire et classiquement modulée lors d’infections virales. En plus de son rôle antagoniste sur la voie des interférons de type I, nous avons démontré la capacité de la protéine NS3 de BTV à activer la voie MAPK/ERK. En effet, nous avons démontré que NS3 a la capacité d’augmenter le niveau de phosphorylation des protéines kinases ERK1/2 mais également du facteur de traduction eIF4E. Cette fonction, qui semble être spécifique au BTV par rapport aux autres orbivirus, implique l’interaction de NS3 avec la protéine cellulaire BRAF, une protéine MAP3 kinase jouant un rôle majeur dans l’activation de la voie MAPK/ERK. L’activation cette voie par NS3 pourrait être un mécanisme de détournement de la traduction cellulaire au profit de celle du virus mais aussi constituer un élément de réponse pour expliquer l’hyper-inflammation observée dans le cas d’une infection par ce virusBluetongue virus (BTV) is the etiological agent of the bluetongue (BT) disease, a non-contagious arbovirus that affects a wide range of wild and domestic ruminants. It is transmitted by blood-feeding midges of the genus Culicoides. There are currently 27 serotypes described of BTV in the world that are distinguished by their differences in term of pathology/virulence and their capacity to infect and disseminate in their mammalian host(s). The first objective of my thesis project was to identify specific cellular interactions of serotype 8 and 27 to reveal new factors of pathogenicity/virulence and/or cross species barrier. To reach this goal, all the proteins encoded by BTV were used as baits to screen, by a high-throughput yeast two-hybrid (Y2H) approach, two complementary DNA libraries originating from hosts naturally infected by BTV : Culicoides and cattle. Therefore, 70 screens were performed to identify a hundred of new virus-host interactions and reveal an enrichment for four cellular processes : mRNA splicing, ribosomes, SUMOylation and apoptosis. This study allowed us to build the first interactome of BTV which continues through multiple biochemical and functional validations of the identified interactions. In parallel to this proteomics work, my second objective was to determine the impact of BTV on the MAPK/ERK pathway, a cellular pathway essential for cell proliferation and differentiation usually modulated during viral infections. In addition to its antagonist role on the type I interferon pathway, we have demonstrated the ability of BTV-NS3 to activate the MAPK/ERK pathway. Indeed, we have demonstrated that NS3 has the ability to increase the level of phosphorylation of ERK1/2 protein and the eIF4E translation factor. This function, which seems to be specific to BTV compared to other orbiviruses, involves the interaction of NS3 with BRAF cellular protein, a MAP3 kinase protein that plays a major role in the regulation of the MAPK/ERK pathway. These results could provide a better understanding of the molecular basis underlying the hijacking of the translation machinery to support virus replication but also constitute a hypothesis to explain the hyperinflammation observed in the BTV infection contex
A new OCH β-lactamase from a Brucella pseudintermedia (Ochrobactrum intermedium) strain isolated from Zophobas morio larvae.
OBJECTIVES
OCH class C β-lactamases have been reported in several species belonging to the Brucella genus that were formerly known as Ochrobactrum. Moreover, only one complete genome of Brucella pseudintermedia has been published. In this work, we describe the genome of a B. pseudintermedia strain possessing a new blaOCH gene that was isolated from Zophobas morio larvae.
METHODS
Hybrid whole-genome sequencing analysis (Illumina and Nanopore) was used to identify and characterize the strain (Ops-OCH-23). Phylogenetic analyses based on the 16S rRNA gene sequence and a core-genome alignment were performed to study the relationships among Ops-OCH-23 and deposited genomes. Moreover, all deposited blaOCH genes were compared to the one found in Ops-OCH-23.
RESULTS
Ops-OCH-23 showed a susceptibility profile consistent with the production of AmpC β-lactamase(s). Its genome consisted of two chromosomes, of which one carried the blaOCH gene. Such gene encoded a new class C OCH β-lactamase among the fifteen so far reported. Two plasmids (120-Kb and 59-Kb) without any associated antimicrobial resistance genes were also found. Analysis of 16S rRNA revealed that Ops-OCH-23 shared 100% homology with four deposited B. pseudintermedia strains. Moreover, core-genome analysis indicated that the closest match (279 ΔSNVs) to Ops-OCH-23 was strain CTOTU49018 isolated from an urban environment in Germany in 2013.
CONCLUSION
We described the second complete genome of a B. pseudintermedia that also encoded a new OCH β-lactamase variant. Overall, this report expands our knowledge regarding this rarely isolated Brucella species that have been reported so far only few times in human sources
A new in vivo model of intestinal colonization using Zophobas morio larvae: testing hyperepidemic ESBL- and carbapenemase-producing Escherichia coli clones.
Finding strategies for decolonizing gut carriers of multidrug-resistant Escherichia coli (MDR-Ec) is a public-health priority. In this context, novel approaches should be validated in preclinical in vivo gut colonization models before being translated to humans. However, the use of mice presents limitations. Here, we used for the first time Zophobas morio larvae to design a new model of intestinal colonization (28-days duration, T28). Three hyperepidemic MDR-Ec producing extended-spectrum β-lactamases (ESBLs) or carbapenemases were administered via contaminated food to larvae for the first 7 days (T7): Ec-4901.28 (ST131, CTX-M-15), Ec-042 (ST410, OXA-181) and Ec-050 (ST167, NDM-5). Growth curve analyses showed that larvae became rapidly colonized with all strains (T7, ~106-7 CFU/mL), but bacterial load remained high after the removal of contaminated food only in Ec-4901.28 and Ec-042 (T28, ~103-4 CFU/mL). Moreover, larvae receiving a force-feeding treatment with INTESTI bacteriophage cocktail (on T7 and T10 via gauge needle) were decolonized by Ec-4901.28 (INTESTI-susceptible); however, Ec-042 and Ec-050 (INTESTI-resistant) did not. Initial microbiota (before administering contaminated food) was very rich of bacterial genera (e.g., Lactococcus, Enterococcus, Spiroplasma), but patterns were heterogeneous (Shannon diversity index: range 1.1-2.7) and diverse to each other (Bray-Curtis dissimilarity index ≥30%). However, when larvae were challenged with the MDR-Ec with or without administering bacteriophages the microbiota showed a non-significant reduction of the diversity during the 28-day experiments. In conclusion, the Z. morio larvae model promises to be a feasible and high-throughput approach to study novel gut decolonization strategies for MDR-Ec reducing the number of subsequent confirmatory mammalian experiments
Complete genome sequence of Pseudomonas canadensis strain Pcan-CK-23 isolated from Zophobas morio larvae.
We present the complete genome sequence of Pseudomonas canadensis. The strain (Pcan-CK-23) was isolated from Zophobas morio (superworm) larvae. The genome consisted of a 6,424,469 bp chromosome with a GC content of 60.3% and 5,973 genes. Pcan-CK-23 can be used as a reference genome for further studies with P. canadensis
Bluetongue Virus in France: An Illustration of the European and Mediterranean Context since the 2000s
International audienceBluetongue (BT) is a non-contagious animal disease transmitted by midges of the Culicoides genus. The etiological agent is the BT virus (BTV) that induces a variety of clinical signs in wild or domestic ruminants. BT is included in the notifiable diseases list of the World Organization for Animal Health (OIE) due to its health impact on domestic ruminants. A total of 27 BTV serotypes have been described and additional serotypes have recently been identified. Since the 2000s, the distribution of BTV has changed in Europe and in the Mediterranean Basin, with continuous BTV incursions involving various BTV serotypes and strains. These BTV strains, depending on their origin, have emerged and spread through various routes in the Mediterranean Basin and/or in Europe. Consequently, control measures have been put in place in France to eradicate the virus or circumscribe its spread. These measures mainly consist of assessing virus movements and the vaccination of domestic ruminants. Many vaccination campaigns were first carried out in Europe using attenuated vaccines and, in a second period, using exclusively inactivated vaccines. This review focuses on the history of the various BTV strain incursions in France since the 2000s, describing strain characteristics, their origins, and the different routes of spread in Europe and/or in the Mediterranean Basin. The control measures implemented to address this disease are also discussed. Finally, we explain the circumstances leading to the change in the BTV status of France from BTV-free in 2000 to an enzootic status since 2018
Comparative Virus-Host Protein Interactions of the Bluetongue Virus NS4 Virulence Factor
This study was funded by the Blue-Med project in the framework of the PRIMA program, an Art.185 initiative supported and funded under European Union Horizon 2020International audienceBluetongue virus (BTV) is the etiologic agent of a non-contagious arthropod-borne disease transmitted to wild and domestic ruminants. BTV induces a large panel of clinical manifestations ranging from asymptomatic infection to lethal hemorrhagic fever. Despite the fact that BTV has been studied extensively, we still have little understanding of the molecular determinants of BTV virulence. In our report, we have performed a comparative yeast two-hybrid (Y2H) screening approach to search direct cellular targets of the NS4 virulence factor encoded by two different serotypes of BTV: BTV8 and BTV27. This led to identifying Wilms’ tumor 1-associated protein (WTAP) as a new interactor of the BTV-NS4. In contrast to BTV8, 1, 4 and 25, NS4 proteins from BTV27 and BTV30 are unable to interact with WTAP. This interaction with WTAP is carried by a peptide of 34 amino acids (NS422−55) within its putative coil-coiled structure. Most importantly, we showed that binding to WTAP is restored with a chimeric protein where BTV27-NS4 is substituted by BTV8-NS4 in the region encompassing residue 22 to 55. We also demonstrated that WTAP silencing reduces viral titers and the expression of viral proteins, suggesting that BTV-NS4 targets a cellular function of WTAP to increase its viral replication
A Live Cell Protein Complementation Assay for ORFeome-Wide Probing of Human HOX Interactomes
Biological pathways rely on the formation of intricate protein interaction networks called interactomes. Getting a comprehensive map of interactomes implies the development of tools that allow one to capture transient and low-affinity protein–protein interactions (PPIs) in live conditions. Here we presented an experimental strategy: the Cell-PCA (cell-based protein complementation assay), which was based on bimolecular fluorescence complementation (BiFC) for ORFeome-wide screening of proteins that interact with different bait proteins in the same live cell context, by combining high-throughput sequencing method. The specificity and sensitivity of the Cell-PCA was established by using a wild-type and a single-amino-acid-mutated HOXA9 protein, and the approach was subsequently applied to seven additional human HOX proteins. These proof-of-concept experiments revealed novel molecular properties of HOX interactomes and led to the identification of a novel cofactor of HOXB13 that promoted its proliferative activity in a cancer cell context. Taken together, our work demonstrated that the Cell-PCA was pertinent for revealing and, importantly, comparing the interactomes of different or highly related bait proteins in the same cell context
Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes
International audienceHepatitis C virus (HCV) relies on cellular lipid metabolism for its replication, and actively modulates lipogenesis and lipid trafficking in infected hepatocytes. This translates into an intracellular accumulation of triglycerides leading to liver steatosis, cirrhosis and hepatocellular carcinoma, which are hallmarks of HCV pathogenesis. While the interaction of HCV with hepatocyte metabolic pathways is patent, how viral proteins are able to redirect central carbon metabolism towards lipogenesis is unclear. Here, we report that the HCV protein NS5A activates the glucokinase (GCK) isoenzyme of hexokinases through its D2 domain (NS5A-D2). GCK is the first rate-limiting enzyme of glycolysis in normal hepatocytes whose expression is replaced by the hexokinase 2 (HK2) isoenzyme in hepatocellular carcinoma cell lines. We took advantage of a unique cellular model specifically engineered to re-express GCK instead of HK2 in the Huh7 cell line to evaluate the consequences of NS5A-D2 expression on central carbon and lipid metabolism. NS5A-D2 increased glucose consumption but decreased glycogen storage. This was accompanied by an altered mitochondrial respiration, an accumulation of intracellular triglycerides and an increased production of very-low density lipoproteins. Altogether, our results show that NS5A-D2 can reprogram central carbon metabolism towards a more energetic and glycolytic phenotype compatible with HCV needs for replication