224 research outputs found

    Soluble FLT1 sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signalling.

    Get PDF
    AIMS: Pre-eclampsia affects 5-7% of pregnancies, and is a major cause of maternal and foetal death. Elevated serum levels of placentally derived splice variants of the vascular endothelial growth factor (VEGF) receptor, soluble fms-like tyrosine kinase-1 (sFLT1), are strongly implicated in the pathogenesis but, as yet, no underlying mechanism has been described. An excessive inflammatory-like response is thought to contribute to the maternal endothelial cell dysfunction that characterizes pre-eclampsia. We hypothesized that sFLT1 antagonizes autocrine VEGF-A signalling, rendering endothelial cells more sensitive to pro-inflammatory factors also released by the placenta. We tested this by manipulating VEGF receptor signalling and treating endothelial cells with low doses of tumour necrosis factor-α (TNF-α). METHODS AND RESULTS: Application of recombinant sFLT1 alone did not activate human umbilical vein endothelial cells (HUVECs). However, antagonizing the autocrine actions of endothelial VEGF-A and/or placenta growth factor (PlGF) by pre-incubation with recombinant sFLT1, anti-FLT1, anti-VEGF receptor 2 (KDR), anti-VEGF-A, VEGF receptor tyrosine kinase inhibitor SU5614, or knocking-down FLT1 or KDR transcripts rendered cells more sensitive to low doses of TNF-α. Each treatment increased activation, as measured by increases in endothelial intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), endothelin 1 (ET-1), von Willebrand factor (vWF), and leucocyte adhesion, and led to reduction in AKT Ser⁴⁷³ and endothelial nitric oxide synthase (eNOS) Ser¹¹⁷⁷ phosphorylation. CONCLUSIONS: Our data describe a mechanism by which sFLT1 sensitizes endothelial cells to pro-inflammatory factors, providing an explanation for how placental stress may precipitate the pre-eclamptic syndrome

    Energy status and HIF signalling in chorionic villi show no evidence of hypoxic stress during human early placental development.

    Get PDF
    Early human placental and embryonic development occurs in a physiologically low oxygen environment supported by histiotrophic secretions from endometrial glands. In this study, we compare the placental metabolomic profile in the first, second and third trimesters to determine whether the energy demands are adequately met in the first trimester. We investigated whether hypoxia-inducible factors, HIF-1α and/or HIF-2α, might regulate transcription during the first trimester. First and second trimester tissue was collected using a chorionic villus sampling-like (CVS) technique. Part of each villus sample was frozen immediately and the remainder cultured under 2 or 21% O2 ± 1 mM H2O2, and ±the p38 MAPK pathway inhibitor, PD169316. Levels of HIF-1α were assessed by western blotting and VEGFA, PlGF and GLUT3 transcripts were quantified by RT-PCR. Term samples were collected from normal elective Caesarean deliveries. There were no significant differences in concentrations of ADP, NAD(+), lactate, and glucose, and in the ATP/ADP ratio, across gestational age. Neither HIF-1α nor HIF-2α could be detected in time-zero CVS samples. However, culture under any condition (2 or 21% O2 ± 1 mM H2O2) increased HIF-1α and HIF-2α. HIF-1α and HIF-2α were additionally detected in specimens retrieved after curettage. HIF-1α stabilization was accompanied by significant increases in VEGFA and GLUT3 and a decrease in PlGF mRNAs. These effects were suppressed by PD169316. In conclusion, our data suggest that first trimester placental tissues are not energetically compromised, and that HIF-1α is unlikely to play an appreciable role in regulating transcriptional activity under steady-state conditions in vivo. However, the pathway may be activated by stress conditions.This work was supported by the Wellcome Trust (084804/2/08/Z). Funding to pay the Open Access publication charges for this article was provided by theWellcome Trust.This is the final published version. It originally appeared in Molecular Human Reproduction, at http://dx.doi.org/10.1093/molehr/gau105

    Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult.

    Get PDF
    A functioning placental renin-angiotensin system (RAS) appears necessary for uncomplicated pregnancy and is present during placentation, which occurs under low oxygen tensions. Placental RAS is increased in pre-eclampsia (PE), characterised by placental dysfunction and elevated oxidative stress. We investigated the effect of high altitude hypoxia on the RAS and hypoxia-inducible factors (HIFs) by measuring mRNA and protein expression in term placentae from normotensive (NT) and PE women who delivered at sea level or above 3100 m, using an explant model of hypoxia-reoxygenation to assess the impact of acute oxidative stress on the RAS and HIFs. Protein levels of prorenin (P = 0.049), prorenin receptor (PRR; P = 0.0004), and angiotensin type 1 receptor (AT1R, P = 0.006) and type 2 receptor (AT2R, P = 0.002) were all significantly higher in placentae from NT women at altitude, despite mRNA expression being unaffected. However, mRNA expression of all RAS components was significantly lower in PE at altitude than at sea level, yet PRR, angiotensinogen (AGT) and AT1R proteins were all increased. The increase in transcript and protein expression of all the HIFs and NADPH oxidase 4 seen in PE compared to NT at sea level was blunted at high altitude. Experimentally induced oxidative stress stimulated AGT mRNA (P = 0.04) and protein (P = 0.025). AT1R (r = 0.77, P < 0.001) and AT2R (r = 0.81, P < 0.001) mRNA both significantly correlated with HIF-1β, whilst AT2R also correlated with HIF-1α (r = 0.512, P < 0.013). Our observations suggest that the placental RAS is responsive to changes in tissue oxygenation: this could be important in the interplay between reactive oxygen species as cell-signalling molecules for angiogenesis and hence placental development and function.HDM is supported by an ERA-EDTA Fellowship (ERA LTF 137-2013).This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1113/JP27104

    Placental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 and ATF6β: implications for the pathophysiology of human pregnancy complications.

    Get PDF
    Low maternal circulating concentrations of placental growth factor (PlGF) are one of the hallmarks of human pregnancy complications, including fetal growth restriction (FGR) and early-onset pre-eclampsia (PE). Currently, PlGF is used clinically with other biomarkers to screen for high-risk cases, although the mechanisms underlying its regulation are largely unknown. Placental endoplasmic reticulum (ER) stress has recently been found to be elevated in cases of FGR, and to an even greater extent in early-onset PE complicated with FGR. ER stress activates the unfolded protein response (UPR); attenuation of protein translation and a reduction in cell growth and proliferation play crucial roles in the pathophysiology of these complications of pregnancy. In this study, we further identified that ER stress regulates release of PlGF. We first observed that down-regulation of PlGF protein was associated with nuclear localization of ATF4, ATF6α and ATF6β in the syncytiotrophoblast of placentae from PE patients. Transcript analysis showed a decrease of PlGF mRNA, and an increase from genes encoding those UPR transcription factors in placentae from cases of early-onset PE, but not of late-onset (>34 weeks) PE, compared to term controls. Further investigations indicated a strong correlation between ATF4 and PlGF mRNA levels only (r = - 0.73, p < 0.05). These results could be recapitulated in trophoblast-like cells exposed to chemical inducers of ER stress or hypoxia-reoxygenation. The stability of PlGF transcripts was unchanged. The use of small interfering RNA specific for transcription factors in the UPR pathways revealed that ATF4 and ATF6β, but not ATF6α, modulate PlGF transcription. To conclude, ATF4 and ATF6β act synergistically in the negative regulation of PlGF mRNA expression, resulting in reduced PlGF secretion by the trophoblast in response to stress. Therefore, these results further support the targeting of placental ER stress as a potential new therapeutic intervention for these pregnancy complications.This study was supported by a grant from The Wellcome Trust (084804/2/08/Z).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/path.467

    RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken

    Get PDF
    The yolk sac is phylogenetically the oldest of the extraembryonic membranes. The human embryo retains a yolk sac, which goes through primary and secondary phases of development, but its importance is controversial. Although it is known to synthesize proteins, its transport functions are widely considered vestigial. Here, we report RNA-sequencing (RNA-seq) data for the human and murine yolk sacs and compare those data with data for the chicken. We also relate the human RNA-seq data to proteomic data for the coelomic fluid bathing the yolk sac. Conservation of transcriptomes across the species indicates that the human secondary yolk sac likely performs key functions early in development, particularly uptake and processing of macro- and micronutrients, many of which are found in coelomic fluid. More generally, our findings shed light on evolutionary mechanisms that give rise to complex structures such as the placenta. We identify genetic modules that are conserved across mammals and birds, suggesting these modules are part of the core amniote genetic repertoire and are the building blocks for both oviparous and viviparous reproductive modes. We propose that although a choriovitelline placenta is never established physically in the human, the placental villi, the exocoelomic cavity, and the secondary yolk sac function together as a physiological equivalent.M.G.E. is the recipient of a Research Fellowship from St. John’s College, University of Cambridge. This study was supported by Medical Research Council Grant MR/L020041/1

    RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition.

    Get PDF
    The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester. The motifs of CBX3 and BCL6 were significantly overrepresented, indicating the involvement of these transcription factor networks in the regulation of trophoblast migration, proliferation and fusion. These findings are consistent with a high level of cell proliferation and hormone secretion by the early placenta to secure implantation in a physiological low-oxygen environment

    RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition.

    Get PDF
    The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester. The motifs of CBX3 and BCL6 were significantly overrepresented, indicating the involvement of these transcription factor networks in the regulation of trophoblast migration, proliferation and fusion. These findings are consistent with a high level of cell proliferation and hormone secretion by the early placenta to secure implantation in a physiological low-oxygen environment

    RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition.

    Get PDF
    The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester. The motifs of CBX3 and BCL6 were significantly overrepresented, indicating the involvement of these transcription factor networks in the regulation of trophoblast migration, proliferation and fusion. These findings are consistent with a high level of cell proliferation and hormone secretion by the early placenta to secure implantation in a physiological low-oxygen environment
    corecore