49 research outputs found
Minocycline Synergizes with N-Acetylcysteine and Improves Cognition and Memory Following Traumatic Brain Injury in Rats
Background: There are no drugs presently available to treat traumatic brain injury (TBI). A variety of single drugs have failed clinical trials suggesting a role for drug combinations. Drug combinations acting synergistically often provide the greatest combination of potency and safety. The drugs examined (minocycline (MINO), N-acetylcysteine (NAC), simvastatin, cyclosporine A, and progesterone) had FDA-approval for uses other than TBI and limited brain injury in experimental TBI models. Methodology/Principal Findings: Drugs were dosed one hour after injury using the controlled cortical impact (CCI) TBI model in adult rats. One week later, drugs were tested for efficacy and drug combinations tested for synergy on a hierarchy of behavioral tests that included active place avoidance testing. As monotherapy, only MINO improved acquisition of the massed version of active place avoidance that required memory lasting less than two hours. MINO-treated animals, however, were impaired during the spaced version of the same avoidance task that required 24-hour memory retention. Coadministration of NAC with MINO synergistically improved spaced learning. Examination of brain histology 2 weeks after injury suggested that MINO plus NAC preserved white, but not grey matter, since lesion volume was unaffected, yet myelin loss was attenuated. When dosed 3 hours before injury, MINO plus NAC as single drugs had no effect on interleukin-1 formation; together they synergistically lowered interleukin-1 levels. This effect on interleukin-1 was not observed when th
Dynamic Grouping of Hippocampal Neural Activity During Cognitive Control of Two Spatial Frames
Hippocampal neurons represent two concurrent streams of spatial information by transiently organizing into subpopulations of coactive neurons and can reflect the most behaviorally relevant information at any given time
Augmented Reality for the assessment of children's spatial memory in real settings
Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. There are no available, specific, and adapted instruments to study the development of memory and spatial orientation in people while they are moving. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children s skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N=76) were divided into two groups: preschool (5-6 year olds) and primary school (7-8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent s questionnaire about a child s everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task s usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect school academic achievementFunded by the Spanish Government (MINECO) and European Regional Development Fund (FEDER) in the CHILDMNEMOS project TIN2012-37381-C02-01, Gobierno de Aragon (Dpt. Industria e Innovacion), Fondo Social Europeo, Fundacion Universitaria Antonio Gargallo and Obra Social Ibercaja. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Juan, M.; Mendez Lopez, M.; Pérez Hernández, E.; Albiol Pérez, S. (2014). Augmented Reality for the assessment of children's spatial memory in real settings. PLoS ONE. 9(12):113751-113771. https://doi.org/10.1371/journal.pone.0113751S113751113771912Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis. Child Development, 56(6), 1479. doi:10.2307/1130467Simmons, F. R., Willis, C., & Adams, A.-M. (2012). Different components of working memory have different relationships with different mathematical skills. Journal of Experimental Child Psychology, 111(2), 139-155. doi:10.1016/j.jecp.2011.08.011Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. doi:10.1016/j.jecp.2009.11.003Bavin, E. L., Wilson, P. H., Maruff, P., & Sleeman, F. (2005). Spatio‐visual memory of children with specific language impairment: evidence for generalized processing problems. International Journal of Language & Communication Disorders, 40(3), 319-332. doi:10.1080/13682820400027750Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49(10), 2674-2688. doi:10.1016/j.cortex.2013.06.007Mammarella, I. C., & Cornoldi, C. (2013). An analysis of the criteria used to diagnose children with Nonverbal Learning Disability (NLD). Child Neuropsychology, 20(3), 255-280. doi:10.1080/09297049.2013.796920Alloway TP (2007) Automated Working Memory Assessment. London: The Psychological Corporation.Oades, R. D., & Isaacson, R. L. (1978). The development of food search behavior by rats: The effects of hippocampal damage and haloperidol. Behavioral Biology, 24(3), 327-337. doi:10.1016/s0091-6773(79)90184-6Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60. doi:10.1016/0165-0270(84)90007-4Olton, D. S. (1987). The radial arm maze as a tool in behavioral pharmacology. Physiology & Behavior, 40(6), 793-797. doi:10.1016/0031-9384(87)90286-1Méndez-López, M., Méndez, M., López, L., & Arias, J. L. (2009). Sexually dimorphic c-Fos expression following spatial working memory in young and adult rats. Physiology & Behavior, 98(3), 307-317. doi:10.1016/j.physbeh.2009.06.006Munoz M, Morris RGM (2009) Episodic memory in animals. In:Squire LR editor. New Encyclopedia of Neuroscience. Oxford: Academic Press. pp.1173–1182.SHORE, D. I., STANFORD, L., MACINNES, W. J., KLEIN, R. M., & BROWN, R. E. (2001). Of mice and men: Virtual Hebb-Williams mazes permit comparison of spatial learning across species. Cognitive, Affective, & Behavioral Neuroscience, 1(1), 83-89. doi:10.3758/cabn.1.1.83Astur, R. S., Taylor, L. B., Mamelak, A. N., Philpott, L., & Sutherland, R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behavioural Brain Research, 132(1), 77-84. doi:10.1016/s0166-4328(01)00399-0Astur, R. S., Tropp, J., Sava, S., Constable, R. T., & Markus, E. J. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation☆. Behavioural Brain Research, 151(1-2), 103-115. doi:10.1016/j.bbr.2003.08.024Sturz, B. R., & Bodily, K. D. (2010). Encoding of variability of landmark-based spatial information. Psychological Research, 74(6), 560-567. doi:10.1007/s00426-010-0277-4Cánovas, R., García, R. F., & Cimadevilla, J. M. (2011). Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task. Behavioural Brain Research, 216(1), 116-121. doi:10.1016/j.bbr.2010.07.026Cimadevilla, J. M., Cánovas, R., Iribarne, L., Soria, A., & López, L. (2011). A virtual-based task to assess place avoidance in humans. Journal of Neuroscience Methods, 196(1), 45-50. doi:10.1016/j.jneumeth.2010.12.026Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149-178. doi:10.1016/0010-0277(86)90041-7Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A Temporoparietal and Prefrontal Network for Retrieving the Spatial Context of Lifelike Events. NeuroImage, 14(2), 439-453. doi:10.1006/nimg.2001.0806Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The Human Hippocampus and Spatial and Episodic Memory. Neuron, 35(4), 625-641. doi:10.1016/s0896-6273(02)00830-9Passolunghi, M. C., & Mammarella, I. C. (2011). Selective Spatial Working Memory Impairment in a Group of Children With Mathematics Learning Disabilities and Poor Problem-Solving Skills. Journal of Learning Disabilities, 45(4), 341-350. doi:10.1177/0022219411400746Thomas, E., Reeve, R., Fredrickson, A., & Maruff, P. (2011). Spatial memory and executive functions in children. Child Neuropsychology, 17(6), 599-615. doi:10.1080/09297049.2011.567980SPOONER, D., & PACHANA, N. (2006). Ecological validity in neuropsychological assessment: A case for greater consideration in research with neurologically intact populations. Archives of Clinical Neuropsychology, 21(4), 327-337. doi:10.1016/j.acn.2006.04.004Juan, M. C., Alcaniz, M., Monserrat, C., Botella, C., Banos, R. M., & Guerrero, B. (2005). Using Augmented Reality to Treat Phobias. IEEE Computer Graphics and Applications, 25(6), 31-37. doi:10.1109/mcg.2005.143Furió, D., González-Gancedo, S., Juan, M.-C., Seguí, I., & Costa, M. (2013). The effects of the size and weight of a mobile device on an educational game. Computers & Education, 64, 24-41. doi:10.1016/j.compedu.2012.12.015Juan MC, Furió D, Alem L, Ashworth P, Cano J (2011) ARGreenet and BasicGreenet: Two mobile games for learning how to recycle. Proceedings of the 19th International Conference on Computer Graphics, Visualization and Computer Vision. pp.25–32.Furió, D., González-Gancedo, S., Juan, M.-C., Seguí, I., & Rando, N. (2013). Evaluation of learning outcomes using an educational iPhone game vs. traditional game. Computers & Education, 64, 1-23. doi:10.1016/j.compedu.2012.12.001Albrecht, U.-V., Folta-Schoofs, K., Behrends, M., & von Jan, U. (2013). Effects of Mobile Augmented Reality Learning Compared to Textbook Learning on Medical Students: Randomized Controlled Pilot Study. Journal of Medical Internet Research, 15(8), e182. doi:10.2196/jmir.2497Liu, P.-H. E., & Tsai, M.-K. (2012). Using augmented-reality-based mobile learning material in EFL English composition: An exploratory case study. British Journal of Educational Technology, 44(1), E1-E4. doi:10.1111/j.1467-8535.2012.01302.xBaddeley AD (1986) Working memory. Oxford: Clarendon Press.Alloway TP (2012) Working Memory Assessment. Second Edi. London: Pearson Assessment.Kamphaus KW, Perez-Hernandez E, Sanchez-Sanchez F (2014) Cuestionario de Evaluación Clínica de la Memoria. In press. Madrid: TEA Ediciones.Smith, A. D., Gilchrist, I. D., & Hood, B. M. (2005). Children’s Search Behaviour in Large-Scale Space: Developmental Components of Exploration. Perception, 34(10), 1221-1229. doi:10.1068/p5270Piccardi, L., Palermo, L., Leonzi, M., Risetti, M., Zompanti, L., D’Amico, S., & Guariglia, C. (2014). The Walking Corsi Test (WalCT): A Normative Study of Topographical Working Memory in a Sample of 4- to 11-Year-Olds. The Clinical Neuropsychologist, 28(1), 84-96. doi:10.1080/13854046.2013.863976Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The Structure of Working Memory From 4 to 15 Years of Age. Developmental Psychology, 40(2), 177-190. doi:10.1037/0012-1649.40.2.177Best, J. R., & Miller, P. H. (2010). A Developmental Perspective on Executive Function. Child Development, 81(6), 1641-1660. doi:10.1111/j.1467-8624.2010.01499.xBianchini, F., Incoccia, C., Palermo, L., Piccardi, L., Zompanti, L., Sabatini, U., … Guariglia, C. (2010). Developmental topographical disorientation in a healthy subject. Neuropsychologia, 48(6), 1563-1573. doi:10.1016/j.neuropsychologia.2010.01.025Iaria, G., & Barton, J. J. S. (2010). Developmental topographical disorientation: a newly discovered cognitive disorder. Experimental Brain Research, 206(2), 189-196. doi:10.1007/s00221-010-2256-9Lowe, P. A., Mayfield, J. W., & Reynolds, C. R. (2003). Gender differences in memory test performance among children and adolescents. Archives of Clinical Neuropsychology, 18(8), 865-878. doi:10.1093/arclin/18.8.865Barnfield, A. M. C. (1999). Development of Sex Differences in Spatial Memory. Perceptual and Motor Skills, 89(1), 339-350. doi:10.2466/pms.1999.89.1.339Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The working memory rating scale: A classroom-based behavioral assessment of working memory. Learning and Individual Differences, 19(2), 242-245. doi:10.1016/j.lindif.2008.10.003Injoque-Ricle, I., Calero, A. D., Alloway, T. P., & Burin, D. I. (2011). Assessing working memory in Spanish-speaking children: Automated Working Memory Assessment battery adaptation. Learning and Individual Differences, 21(1), 78-84. doi:10.1016/j.lindif.2010.09.012Jones, A., Scanlon, E., Tosunoglu, C., Morris, E., Ross, S., Butcher, P., & Greenberg, J. (1999). Contexts for evaluating educational software. Interacting with Computers, 11(5), 499-516. doi:10.1016/s0953-5438(98)00064-2Mayes, J. ., & Fowler, C. . (1999). Learning technology and usability: a framework for understanding courseware. Interacting with Computers, 11(5), 485-497. doi:10.1016/s0953-5438(98)00065-4Squires, D., & Preece, J. (1999). Predicting quality in educational software: Interacting with Computers, 11(5), 467-483. doi:10.1016/s0953-5438(98)00063-0Sun, P.-C., Tsai, R. J., Finger, G., Chen, Y.-Y., & Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183-1202. doi:10.1016/j.compedu.2006.11.007Lee, S. J., Srinivasan, S., Trail, T., Lewis, D., & Lopez, S. (2011). Examining the relationship among student perception of support, course satisfaction, and learning outcomes in online learning. The Internet and Higher Education, 14(3), 158-163. doi:10.1016/j.iheduc.2011.04.001Lyons KE, Zelazo PD (2011) Monitoring, metacognition, and executive function: elucidating the role of self-reflection in the development of self-regulation. In:Benson Jeditor. Advances in Child Development and Behavior. Burlington: Academic Press. pp.379–412
Modelização de agroecossistemas como ferramenta de comunicação em ambientes de montanha no Brasil e na Argentina
O presente artigo avalia metodologia de modelização como instrumento comunicativo para trabalhar de forma sistêmica a percepção de agricultores familiares sobre as potencialidades e fragilidades, ecológica e produtiva, de seus agroecossistemas, fundamentado na análise de sistemas de produção de base agroecológica e convencional desenvolvidos em ambientes de montanha. Parte-se de caracterização geral do contexto ambiental e produtivo local para, em seguida, com base em levantamento participativo com famílias agricultoras, estabelecer a modelização de quatro agroecossistemas, sendo dois no Brasil e dois na Argentina. A modelização possibilitou analisar o contexto socioprodutivo das famílias agricultoras em ambientes montanos nos dois países, a partir dos fluxos econômicos e ecológicos em seus agroecossistemas, identificando oportunidades e restrições, em suas unidades de produção, para a inserção de práticas agroecológicas associadas às estratégias de reprodução econômica, construídas historicamente no contexto sociocultural local, tendo por base análise das relações entre as variáveis determinantes para as decisões estratégicas adotadas. A metodologia de análise de agroecossistemas representa instrumento importante para diálogos, pesquisas e ações para o desenvolvimento rural sustentável de regiões de montanha e contribui com subsídios para políticas públicas, bem como para a elaboração e implantação de projetos sociais e ambientais com foco na agroecologia e agricultura familiar