548 research outputs found

    Review on novel methods for lattice gauge theories

    No full text

    Review: Object vision in a structured world

    Get PDF
    In natural vision, objects appear at typical locations, both with respect to visual space (e.g., an airplane in the upper part of a scene) and other objects (e.g., a lamp above a table). Recent studies have shown that object vision is strongly adapted to such positional regularities. In this review we synthesize these developments, highlighting that adaptations to positional regularities facilitate object detection and recognition, and sharpen the representations of objects in visual cortex. These effects are pervasive across various types of high-level content. We posit that adaptations to real-world structure collectively support optimal usage of limited cortical processing resources. Taking positional regularities into account will thus be essential for understanding efficient object vision in the real world

    Thermal evolution of the Schwinger model with Matrix Product Operators

    Full text link
    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.Comment: 6 pages, 11 figure

    Parts and Wholes in Scene Processing

    Get PDF
    During natural vision, our brains are constantly exposed to complex, but regularly structured, environments. Real-world scenes are defined by typical part–whole relationships, where the meaning of the whole scene emerges from configurations of localized information present in individual parts of the scene. Such typical part–whole relationships suggest that information from individual scene parts is not processed independently, but that there are mutual influences between the parts and the whole during scene analysis. Here, we review recent research that used a straightforward, but effective approach to study such mutual influences: By dissecting scenes into multiple arbitrary pieces, these studies provide new insights into how the processing of whole scenes is shaped by their constituent parts and, conversely, how the processing of individual parts is determined by their role within the whole scene. We highlight three facets of this research: First, we discuss studies demonstrating that the spatial configuration of multiple scene parts has a profound impact on the neural processing of the whole scene. Second, we review work showing that cortical responses to individual scene parts are shaped by the context in which these parts typically appear within the environment. Third, we discuss studies demonstrating that missing scene parts are interpolated from the surrounding scene context. Bridging these findings, we argue that efficient scene processing relies on an active use of the scene's part–whole structure, where the visual brain matches scene inputs with internal models of what the world should look like

    The spatiotemporal neural dynamics of object recognition for natural images and line drawings

    Get PDF
    Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms underlie the recognition of both. However, other work has proposed that representations of drawings and natural images become similar only after substantial processing has taken place, suggesting distinct mechanisms. To arbitrate between those alternatives, we measured brain responses resolved in space and time using fMRI and MEG, respectively, while human participants (female and male) viewed images of objects depicted as photographs, line drawings, or sketch-like drawings. Using multivariate decoding, we demonstrate that object category information emerged similarly fast and across overlapping regions in occipital, ventral-temporal and posterior parietal cortex for all types of depiction, yet with smaller effects at higher levels of visual abstraction. In addition, cross-decoding between depiction types revealed strong generalization of object category information from early processing stages on. Finally, by combining fMRI and MEG data using representational similarity analysis, we found that visual information traversed similar processing stages for all types of depiction, yet with an overall stronger representation for photographs. Together our results demonstrate broad commonalities in the neural dynamics of object recognition across types of depiction, thus providing clear evidence for shared neural mechanisms underlying recognition of natural object images and abstract drawings

    The spatiotemporal neural dynamics of object recognition for natural images and line drawings

    Get PDF
    Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms underlie the recognition of both. However, other work has proposed that representations of drawings and natural images become similar only after substantial processing has taken place, suggesting distinct mechanisms. To arbitrate between those alternatives, we measured brain responses resolved in space and time using fMRI and MEG, respectively, while participants viewed images of objects depicted as photographs, line drawings, or sketch-like drawings. Using multivariate decoding, we demonstrate that object category information emerged similarly fast and across overlapping regions in occipital and ventral-temporal cortex for all types of depiction, yet with smaller effects at higher levels of visual abstraction. In addition, cross-decoding between depiction types revealed strong generalization of object category information from early processing stages on. Finally, by combining fMRI and MEG data using representational similarity analysis, we found that visual information traversed similar processing stages for all types of depiction, yet with an overall stronger representation for photographs. Together our results demonstrate broad commonalities in the neural dynamics of object recognition across types of depiction, thus providing clear evidence for shared neural mechanisms underlying recognition of natural object images and abstract drawings

    Visual Imagery and Perception Share Neural Representations in the Alpha Frequency Band

    Get PDF
    To behave adaptively with sufficient flexibility, biological organisms must cognize beyond immediate reaction to a physically present stimulus. For this, humans use visual mental imagery [1, 2], the ability to conjure up a vivid internal experience from memory that stands in for the percept of the stimulus. Visually imagined contents subjectively mimic perceived contents, suggesting that imagery and perception share common neural mechanisms. Using multivariate pattern analysis on human electroencephalography (EEG) data, we compared the oscillatory time courses of mental imagery and perception of objects. We found that representations shared between imagery and perception emerged specifically in the alpha frequency band. These representations were present in posterior, but not anterior, electrodes, suggesting an origin in parieto-occipital cortex. Comparison of the shared representations to computational models using representational similarity analysis revealed a relationship to later layers of deep neural networks trained on object representations, but not auditory or semantic models, suggesting representations of complex visual features as the basis of commonality. Together, our results identify and characterize alpha oscillations as a cortical signature of representations shared between visual mental imagery and perception

    The Emotional Intelligence of National Automatic Merchandising Association (NAMA) Vending and Coffee Services Industries Executives: A Pilot Study

    Get PDF
    The authors report the pilot study focused on identifying the emotional intelligence (El) of leaders in the automatic merchandising and coffee service industries. The data were collected from 39 executives, members of National Automatic Merchandising Association (NM), who attended 2005 Executive Development Program on the campus of Michigan State University. Three elements of EI- IN, OUT, RELATIONSHIP for these leaders are discussed

    Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway

    Get PDF
    Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions
    • …
    corecore