8 research outputs found

    Optical Tellegen metamaterial with spontaneous magnetization

    Full text link
    The nonreciprocal magnetoelectric effect, also known as the Tellegen effect, promises a number of groundbreaking phenomena connected to fundamental (e.g., electrodynamics of axion and relativistic matter) and applied physics (e.g., magnetless isolators). We propose a three-dimensional metamaterial with an isotropic and resonant Tellegen response in the visible frequency range. The metamaterial is formed by randomly oriented bi-material nanocylinders in a host medium. Each nanocylinder consists of a ferromagnet in a single-domain magnetic state and a high-permittivity dielectric operating near the magnetic Mie-type resonance. The proposed metamaterial requires no external magnetic bias and operates on the spontaneous magnetization of the nanocylinders. By leveraging the emerging magnetic Weyl semimetals, we further show how a giant bulk effective magnetoelectric effect can be achieved in a proposed metamaterial, exceeding that of natural materials by almost four orders of magnitude.Comment: 11 pages, 4 figure

    Direct observation of multivalent states and charge transfer in Ce-doped yttrium iron garnet thin films

    Full text link
    Due to their large magneto-optic responses, rare-earth-doped yttrium iron garnets, Y3Fe5O12 (YIG), are highly regarded for their potential in photonics and magnonics. Here, we consider the case of Ce-doped YIG (Ce-YIG) thin films, in which substitutional Ce3+ ions are magnetic because of their 4f1 ground state. In order to elucidate the impact of Ce substitution on the magnetization of YIG, we have carried out soft x-ray spectroscopy measurements on Ce-YIG films. In particular, we have used the element specificity of x-ray magnetic circular dichroism to extract the individual magnetization curves linked to Ce and Fe ions. Our results show that Ce doping triggers a selective charge transfer from Ce to the Fe tetrahedral sites in the YIG structure. This, in turn, causes a disruption of the electronic and magnetic properties of the parent compound, reducing the exchange coupling between the Ce and Fe magnetic moments and causing atypical magnetic behavior. Our work is relevant for understanding magnetism in rare-earth-doped YIG and, eventually, may enable a quantitative evaluation of the magneto-optical properties of rare-earth incorporation into YIG

    Association between different measurements of blood pressure variability by ABP monitoring and ankle-brachial index

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood pressure (BP) variability has been associated with cardiovascular outcomes, but there is no consensus about the more effective method to measure it by ambulatory blood pressure monitoring (ABPM). We evaluated the association between three different methods to estimate BP variability by ABPM and the ankle brachial index (ABI).</p> <p>Methods and Results</p> <p>In a cross-sectional study of patients with hypertension, BP variability was estimated by the time rate index (the first derivative of SBP over time), standard deviation (SD) of 24-hour SBP; and coefficient of variability of 24-hour SBP. ABI was measured with a doppler probe. The sample included 425 patients with a mean age of 57 ± 12 years, being 69.2% women, 26.1% current smokers and 22.1% diabetics. Abnormal ABI (≤ 0.90 or ≥ 1.40) was present in 58 patients. The time rate index was 0.516 ± 0.146 mmHg/min in patients with abnormal ABI versus 0.476 ± 0.124 mmHg/min in patients with normal ABI (P = 0.007). In a logistic regression model the time rate index was associated with ABI, regardless of age (OR = 6.9, 95% CI = 1.1- 42.1; P = 0.04). In a multiple linear regression model, adjusting for age, SBP and diabetes, the time rate index was strongly associated with ABI (P < 0.01). None of the other indexes of BP variability were associated with ABI in univariate and multivariate analyses.</p> <p>Conclusion</p> <p>Time rate index is a sensible method to measure BP variability by ABPM. Its performance for risk stratification of patients with hypertension should be explored in longitudinal studies.</p

    Remanence plots technique extended to exchange bias systems

    No full text
    Efforts have been recently made to use remanence plots in exchange-bias studies. However, since the two remnant magnetizations of a biased loop may differ, this technique cannot be applied in its classical form. This work extends it to systems with shifted loops and shows that the number of distinct plots is significantly increased. The approach was probed on Co/IrMn exchange bias films. Possible discrepancies between experiment and theory are pointed out and discussed. The adaptation of the model presented here enables it to become one of the few accessible techniques for rapid and accurate evaluation of magnetic interactions in biased systems

    Optical Tellegen metamaterial with spontaneous magnetization

    No full text
    The nonreciprocal magnetoelectric effect, also known as the Tellegen effect, promises a number of groundbreaking phenomena connected to fundamental (e.g., electrodynamics of axion and relativistic matter) and applied physics (e.g., magnetless isolators). We propose a three-dimensional metamaterial with an isotropic and resonant Tellegen response in the visible frequency range. The metamaterial is formed by randomly oriented bi-material nanocylinders in a host medium. Each nanocylinder consists of a ferromagnet in a single-domain magnetic state and a high-permittivity dielectric operating near the magnetic Mie-type resonance. The proposed metamaterial requires no external magnetic bias and operates on the spontaneous magnetization of the nanocylinders. By leveraging the emerging magnetic Weyl semimetals, we further show how a giant bulk effective magnetoelectric effect can be achieved in a proposed metamaterial, exceeding that of natural materials by almost four orders of magnitude
    corecore