284 research outputs found

    Pulsed Beam Tests at the SANAEM RFQ Beamline

    Full text link
    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority's (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.Comment: 6 pages, 6 figures. Proceedings of the International Particle Accelerator Conference 2017 (IPAC'17), May 14-19, 2017, TUPAB015, p. 134

    Betatrophin levels are related to the early histological findings in nonalcoholic fatty liver disease

    Get PDF
    Betatrophin, a liver hormone, regulates glucose and lipid metabolism. We investigated the betatrophin levels in nonalcoholic fatty liver disease (NAFLD) and searched for any relationship with histological severity and metabolic parameters. Fifty males with NAFLD [Nonalcoholic Steatohepati-tis (NASH) (n = 32); non-NASH (n = 18)] and 30 healthy controls were included. Plasma betatrophin was measured by ELISA method. Insulin sensitivity was assessed by HOMA-IR index. Histological features were scored by the semi quantitative classification and combined as the NAFLD activity score (NAS). Betatrophin levels in the non-NASH group were significantly higher than the controls. Betatrophin was positively correlated to the age, waist circumference, total cholesterol, triglycerides, LDL cholesterol, glucose, insulin, HOMA-IR index and gamma glutamyl transpeptidase levels, and negatively correlated to the steatosis and NAS. In the stepwise linear regression analysis, the triglyceride (β = 0.457, p < 0.001), glucose (β = 0.281, p = 0.02) and NAS (β = −0.260, p = 0.03) were the independent determinants of betatrophin. Betatrophin levels are higher in the early stages of NAFLD and tend to decrease when the disease progresses. This could be an important preliminary mechanistic finding to explain the increased frequency of glucose intolerance during the course of NAFLD

    Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-κB activation

    Get PDF
    BACKGROUND: Osteopontin (OPN), a secreted phosphoglycoprotein, has been strongly associated with tumor progression and aggressive cancers. MDA-MB-435 cells secrete very high levels of OPN. However metastasis-suppressed MDA-MB-435 cells, which were transfected with breast cancer metastasis suppressor 1 (BRMS1), expressed significantly less OPN. BRMS1 is a member of mSin3-HDAC transcription co-repressor complex and has been shown to suppress the metastasis of breast cancer and melanoma cells in animal models. Hence we hypothesized that BRMS1 regulates OPN expression. RESULTS: The search for a BRMS1-regulated site on the OPN promoter, using luciferase reporter assays of the promoter deletions, identified a novel NF-κB site (OPN/NF-κB). Electrophoretic mobility shift assays and chromatin immunoprecipitations (ChIP) confirmed this site to be an NF-κB-binding site. We also show a role of HDAC3 in suppression of OPN via OPN/NF-κB. CONCLUSION: Our results show that BRMS1 regulates OPN transcription by abrogating NF-κB activation. Thus, we identify OPN, a tumor-metastasis activator, as a crucial downstream target of BRMS1. Suppression of OPN may be one of the possible underlying mechanisms of BRMS1-dependent suppression of tumor metastasis

    Metabolomics approaches in pancreatic adenocarcinoma: Tumor metabolism profiling predicts clinical outcome of patients

    Get PDF
    Background: Pancreatic adenocarcinomas (PAs) have very poor prognoses even when surgery is possible. Currently, there are no tissular biomarkers to predict long-term survival in patients with PA. The aims of this study were to (1) describe the metabolome of pancreatic parenchyma (PP) and PA, (2) determine the impact of neoadjuvant chemotherapy on PP and PA, and (3) find tissue metabolic biomarkers associated with long-term survivors, using metabolomics analysis. Methods: 1H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy using intact tissues was applied to analyze metabolites in PP tissue samples (n = 17) and intact tumor samples (n = 106), obtained from 106 patients undergoing surgical resection for PA. Results: An orthogonal partial least square-discriminant analysis (OPLS-DA) showed a clear distinction between PP and PA. Higher concentrations of myo-inositol and glycerol were shown in PP, whereas higher levels of glucose, ascorbate, ethanolamine, lactate, and taurine were revealed in PA. Among those metabolites, one of them was particularly obvious in the distinction between long-term and short-term survivors. A high ethanolamine level was associated with worse survival. The impact of neoadjuvant chemotherapy was higher on PA than on PP. Conclusions: This study shows that HRMAS NMR spectroscopy using intact tissue provides important and solid information in the characterization of PA. Metabolomics profiling can also predict long-term survival: the assessment of ethanolamine concentration can be clinically relevant as a single metabolic biomarker. This information can be obtained in 20 min, during surgery, to distinguish long-term from short-term survival. © 2017 The Author(s)

    High-resolution magic angle spinning 1H nuclear magnetic resonance spectroscopy metabolomics of hyperfunctioning parathyroid glands

    Get PDF
    Background Primary hyperparathyroidism (PHPT) may be related to a single gland disease or multiglandular disease, which requires specific treatments. At present, an operation is the only curative treatment for PHPT. Currently, there are no biomarkers available to identify these 2 entities (single vs. multiple gland disease). The aims of the present study were to compare (1) the tissue metabolomics profiles between PHPT and renal hyperparathyroidism (secondary and tertiary) and (2) single gland disease with multiglandular disease in PHPT using metabolomics analysis. Methods The method used was 1H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Forty-three samples from 32 patients suffering from hyperparathyroidism were included in this study. Results Significant differences in the metabolomics profile were assessed according to PHPT and renal hyperparathyroidism. A bicomponent orthogonal partial least square-discriminant analysis showed a clear distinction between PHPT and renal hyperparathyroidism (R2Y = 0.85, Q2 = 0.63). Interestingly, the model also distinguished single gland disease from multiglandular disease (R2Y = 0.96, Q2 = 0.55). A network analysis was also performed using the Algorithm to Determine Expected Metabolite Level Alterations Using Mutual Information (ADEMA). Single gland disease was accurately predicted by ADEMA and was associated with higher levels of phosphorylcholine, choline, glycerophosphocholine, fumarate, succinate, lactate, glucose, glutamine, and ascorbate compared with multiglandular disease. Conclusion This study shows for the first time that 1H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy is a reliable and fast technique to distinguish single gland disease from multiglandular disease in patients with PHPT. The potential use of this method as an intraoperative tool requires specific further studies. © 2016 Elsevier Inc

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Management of children with congenital nephrotic syndrome: challenging treatment paradigms

    Get PDF
    Background: Management of children with congenital nephrotic syndrome (CNS) is challenging. Bilateral nephrectomies followed by dialysis and transplantation are practiced in most centres, but conservative treatment may also be effective. / Methods: We conducted a 6-year review across members of the European Society for Paediatric Nephrology Dialysis Working Group to compare management strategies and their outcomes in children with CNS. / Results: Eighty children (50% male) across 17 tertiary nephrology units in Europe were included (mutations in NPHS1, n = 55; NPHS2, n = 1; WT1, n = 9; others, n = 15). Excluding patients with mutations in WT1, antiproteinuric treatment was given in 42 (59%) with an increase in S-albumin in 70% by median 6 (interquartile range: 3–8) g/L (P < 0.001). Following unilateral nephrectomy, S-albumin increased by 4 (1–8) g/L (P = 0.03) with a reduction in albumin infusion dose by 5 (2–9) g/kg/week (P = 0.02). Median age at bilateral nephrectomies (n = 29) was 9 (7–16) months. Outcomes were compared between two groups of NPHS1 patients: those who underwent bilateral nephrectomies (n = 25) versus those on conservative management (n = 17). The number of septic or thrombotic episodes and growth were comparable between the groups. The response to antiproteinuric treatment, as well as renal and patient survival, was independent of NPHS1 mutation type. At final follow-up (median age 34 months) 20 (80%) children in the nephrectomy group were transplanted and 1 died. In the conservative group, 9 (53%) remained without dialysis, 4 (24%; P < 0.001) were transplanted and 2 died. / Conclusion: An individualized, stepwise approach with prolonged conservative management may be a reasonable alternative to early bilateral nephrectomies and dialysis in children with CNS and NPHS1 mutations. Further prospective studies are needed to define indications for unilateral nephrectomy

    The future for Mediterranean wetlands: 50 key issues and 50 important conservation research questions

    Get PDF
    Wetlands are critically important for biodiversity and human wellbeing, but face a range of challenges. This is especially true in the Mediterranean region, where wetlands support endemic and threatened species and remain integral to human societies, but have been severely degraded in recent decades. Here, in order to raise awareness of future challenges and opportunities for Mediterranean wetlands, and to inform proactive research and management, we identified (a) 50 key issues that might affect Mediterranean wetlands between 2020 and 2050, and (b) 50 important research questions that, if answered, would have the greatest impact on the conservation of Mediterranean wetlands between 2020 and 2050. We gathered ideas through an online survey and review of recent literature. A diverse assessment panel prioritised ideas through an iterative, anonymised, Delphi-like process of scoring, voting and discussion. The prioritised issues included some that are already well known but likely to have a large impact on Mediterranean wetlands in the next 30 years (e.g. the accumulation of dams and reservoirs, plastic pollution and weak governance), and some that are currently overlooked in the context of Mediterranean wetlands (e.g. increasing desalination capacity and development of antimicrobial resistance). Questions largely focused on how best to carry out conservation interventions, or understanding the impacts of threats to inform conservation decision-making. This analysis will support research, policy and practice related to environmental conservation and sustainable development in the Mediterranean, and provides a model for similar analyses elsewhere in the world
    corecore