174 research outputs found

    Modification of micro-channel filling flow by poly(dimethylsiloxane) surface functionalization with fluorine—Substituted aminonaphthols

    Get PDF
    Microfluidics based on the capillarity-induced filling of elastomeric channels by a suitable liquid or solution represents a useful route for realizing portable diagnostic devices designed without additional mechanical or electrical micropumps. In this study, an elastomeric mold made of poly(dimethylsiloxane) (PDMS), containing relief patterns placed in intimate contact with a silicon substrate, is utilized to create a continuous network of rectangular micro-channels for the motion of water fluid. The immobilization on activated PDMS surface of suitable functional molecules such as hydrophilic and hydrophobic fluorine-containing aminonaphthols, obtained through a straightforward and versatile synthetic procedure, allowed us to modulate PDMS surface properties depending on the structural characteristics of the employed derivative. In this context, the incorporation of fluorine groups is important for improving biocompatibility of the resulting device, providing surfaces that could be chemically and biologically inert as well as resistant to surface adhesion phenomena. The functionalization from liquid phase of PDMS replicas, involving a covalent derivatization via silanization reaction of the above mentioned compounds to an oxidized PDMS surface, resulted in a successful modification of microfluidic motion of water in rectangular capillaries, moreover contact angle values evidence also how wettability of PDMS films could be modulated, with the fluorinated aminonaphthols fuctionalized PDMS exhibiting higher contact angles. (C) 2009 Elsevier B.V. All rights reserved

    Analysis and performance assessment of the use of ammonia-based nano additive for lean combustion

    Get PDF
    In recent years, considerable progress has been made in exploring new applications of fuel additives to reduce emissions. Reduction of total nitrogen oxide (NOx) emissions can be achieved by decreasing the flame temperature by using fuel emulsified with water and/or using ammonia-based nano additives such as urea. The use of water as part of the hydrocarbon fuel is also one of the prospective directions in the development of new types of fuel systems. For the preparation of emulsified fuel, it is desirable to achieve greater stability of the emulsified fuel with minimum expenditure of chemicals and energy, so that the emulsified fuel can be used for a longer period. The paper analyzed the influence of nano-dispersed urea particles, water, and surfactant (Span 80/ Tween 80) on the combustion stability and emission characteristics of aviation fuel. The experimental campaign was conducted on a test stand (a 300kW liquid vortex combustor of 300 kW) consisting of a cylindrical combustion chamber with four optical windows and equipped with high-precision pressure sensors, thermocouples, and an exhaust gas analyzer for acquiring emissions. The experimental campaign was conducted at a constant fuel/air ratio (Φ). One of the main focus is related to the stability of the emulsion. Chemiluminescence imaging was performed to characterize the effects of the additive on flame emissions. In addition, a statistical and spectral analysis was performed using the pressure sensor for instability analysis. Exhaust gas analysis was performed both with the additive described above and without additive for a constant Φ condition. The analysis was performed for NOx, carbon monoxide (CO) and carbon dioxide (CO2) and oxygen (O 2)

    Microwave-Assisted Treatment of Waste Wood Biomass with Deep Eutectic Solvents

    Get PDF
    Abstract. The increasing depletion of fossil feeds and the environmental concerns linked to the use of traditional energy sources have stimulated both academic and industrial worlds in exploiting new sustainable and renewable suppliers of raw materials [1]. In this framework, lignocellulosic biomass can play an important role, acting as the starting material of a biorefinery leading to biofuels, chemicals, and other value-added products, commonly obtained from petroleum. Recently, numerous protocols for processing lignocellulosic biomass of selected plants have been reported. However, developing an environment-friendly method is still a big goal. This challenge becomes more interesting if lignocellulosic biomass coming from wood wastes could be efficiently treated. Deep eutectic solvents (DESs) are new sustainable and cheap reaction media, combining the features of ionic liquids and organic solvents. They are made by association of hydrogen-bond donors and hydrogen-bond acceptors, and they can promote the hydrolysis of lignocellulosic bonds [2]. Herein, we report on the microwave-assisted treatment of waste wood flours with DESs formed by choline chloride and oxalic acid to get a cellulosic residue separated from lignin degradation products, identified by NMR spectroscopy. The insoluble deposit was characterized by SEM, TGA, DSC, FTIR-ATR and 13C CP/MAS NMR techniques and could be available for further uses such as nanocellulose production. [1] Haldar D., Purkait M.K. Chemosphere 2021, 128523. [2] Liu S., Zhang Q., Gou S., Zhang L., Wang Z. Carbohydr. Polym. 2021, 251, 11701

    Air/methane mixture ignition with Multi-Walled Carbon Nanotubes (MWCNTs) and comparison with spark ignition

    Get PDF
    The possibility to ignite the single wall carbon nanotubes (SWCNTs) containing impurities of iron in atmosphere once exposed to the radiation of a flash camera was observed for the first time in 2002. Afterwards, it was proposed to exploit this property in order to use nanostructured materials as ignition agents for fuel mixtures. Finally, in 2011 it was shown that SWCNTs can be effectively used as ignition source for an air/ethylene mixture filling a constant volume combustion chamber; the observed combustion presented the characteristics of a homogeneous-like combustion. In this paper a system for the ignition of an air/methane mixture is proposed, based on the exposition of multi wall carbon nanotubes (MWCNTs) to a low consumption flash camera. Namely, several experiments have been run in which 20 mg of MWCNTs, containing 75% in weight of ferrocene, have been added to an air/methane fuel mixture inside a constant volume combustion chamber. The mixture has been heated up to 373 K and the onset pressure was set equal to 3 bar. The experiments have been run varying the equivalence ratio in the range 1–2. The combustion process so realized has been compared to that obtained igniting the mixture with a traditional spark as in spark ignition engines. The comparison has been based on chamber pressure measurement as well as combustion process images, both sampled at a frequency equal to 2,5 kHz for an overall duration of 1.8 s. Results confirm that the ignition triggered with MWCNTs leads to a homogeneous-like combustion, without observing a well-defined flame front propagation. The contrary is observed, as expected, with the spark assisted ignition. Moreover, dynamic pressure measurements show that, compared to spark assisted ignition, the MWCNTs photo-ignition determines a more rapid pressure gradient and a higher peak pressure which corresponds to a higher energy release rate

    CaCO3 as an environmentally friendly renewable material for drug delivery systems: Uptake of HSA-CaCO3 nanocrystals conjugates in cancer cell lines

    Get PDF
    Chemical and biochemical functionalization of nanoparticles (NPs) can lead to an active cellular uptake enhancing their efficacy thanks to the targeted localization in tumors. In the present study calcium carbonate nano-crystals (CCNs), stabilized by an alcohol dehydration method, were successfully modified by grafting human serum albumin (HSA) on the surface to obtain a pure protein corona. Two types of CCNs were used: naked CaCO3 and the (3-aminopropyl)triethoxysilane (APTES) modified CaCO3-NH2. The HSA conjugation with naked CCN and amino-functionalized CCN (CCN-NH2) was established through the investigation of modification in size, zeta potential, and morphology by Transmission Electron Microscopy (TEM). The amount of HSA coating on the CCNs surface was assessed by spectrophotometry. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) confirmed the grafting of APTES to the surface and successive adsorption of HSA. Furthermore, to evaluate the effect of protein complexation of CCNs on cellular behavior, bioavailability, and biological responses, three human model cancer cell lines, breast cancer (MCF7), cervical cancer (HeLa), and colon carcinoma (Caco-2) were selected to characterize the internalization kinetics, localization, and bio-interaction of the protein-enclosed CCNs. To monitor internalization of the various conjugates, chemical modification with fluorescein-isothiocyanate (FITC) was performed, and their stability over time was measured. Confocal microscopy was used to probe the uptake and confirm localization in the perinuclear region of the cancer cells. Flow cytometry assays confirmed that the bio-functionalization influence cellular uptake and the CCNs behavior depends on both cell line and surface features

    Spin-coated thin films of metal porphyrin-phthalocyanine blend for an optochemical sensor of alcohol vapours

    Get PDF
    Abstract Organic thin films based on a blend of two types of metal-co-ordinated macromolecules, i.e. Zn(II) tetra-4-(2,4-di-tert-amylphenoxy)-phthalocyanine (ZnPc) and Cu(II) tetrakis(p-tert-butylphenyl)porphyrin (CuP) have been deposited by spin-coating and used as optical chemically interacting materials for the detection of methanol, ethanol and isopropanol vapours. This paper reports the use of a specific optical technique consisting of the selection of four specific spectral regions taken in the UV-Vis spectral range corresponding to the typical Q and Soret bands of the phthalocyanine and porphyrin macromolecules and their corresponding blends. The variations in the absorption peaks obtained by the exposure of the single ZnPc and CuP sensing layers to the considered vapours in controlled atmosphere have been analysed and compared with those derived from a thin film obtained by mixing the two metal complexes in an appropriate ratio. The performance of the heterogeneous sensing layer (i.e. ZnPc/CuP blend)-based sensor evaluated in term of response and selectivity is different from that of single homogeneous films

    HPLC-HRMS Global Metabolomics Approach for the Diagnosis of “Olive Quick Decline Syndrome” Markers in Olive Trees Leaves

    Get PDF
    Olive quick decline syndrome (OQDS) is a multifactorial disease affecting olive plants. The onset of this economically devastating disease has been associated with a Gram-negative plant pathogen called Xylella fastidiosa (Xf). Liquid chromatography separation coupled to high-resolution mass spectrometry detection is one the most widely applied technologies in metabolomics, as it provides a blend of rapid, sensitive, and selective qualitative and quantitative analyses with the ability to identify metabolites. The purpose of this work is the development of a global metabolomics mass spectrometry assay able to identify OQDS molecular markers that could discriminate between healthy (HP) and infected (OP) olive tree leaves. Results obtained via multivariate analysis through an HPLC-ESI HRMS platform (LTQ-Orbitrap from Thermo Scientific) show a clear separation between HP and OP samples. Among the differentially expressed metabolites, 18 different organic compounds highly expressed in the OP group were annotated; results obtained by this metabolomic approach could be used as a fast and reliable method for the biochemical characterization of OQDS and to develop targeted MS approaches for OQDS detection by foliage analysis

    Uranium and thorium in lamprophyres of the Altai-Sayan folded region

    Get PDF
    The work is devoted to the study of lamprophyres of the Altai-Sayan region. According to X-ray phase analysis, these rocks have a complex mineral composition. According to the TAS diagram, the petrochemical composition varies from alkaline picrites to trachytes. As the INAA shows, the studied samples are significantly enriched with thorium and uranium. Combining the method of electron microscopy and fission radiography (f-radiography), the occurrence forms of thorium and uranium were studied, therefore concentrating minerals were identified
    corecore