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Colloidal semiconductor nanocrystals have been exploited
in several applications in which they serve as fluorophores, be-
cause of the tunability of the wavelength of the emitted
light.[1–3] The possibility of exactly controlling the size of
nanocrystals is of great importance in the development of
these materials, as this will lead to nano-objects with well-de-
fined and reproducible properties. Whereas this goal seems to
be hard to achieve with large nanocrystals, it might be viable
for clusters consisting of a few tens or hundreds of atoms, as
in this size regime a handful of structures can have an excep-
tionally high stability and therefore would form preferentially
over any other combination of atoms. This concept is already
well-known for several metal clusters, as for some of them
several “magic” structures exist that are formed by closed
shells of atoms.[4–7] Cluster molecules that can be considered
as the smallest building units of semiconductors have been in-
vestigated in the past.

As an example several tetrahedral cluster molecules based
on the general formula [EwMx(SR)y]z– (where E = S or Se;
M = Zn or Cd; and R = alkyl or aryl) or similar were reported
some years ago.[8,9] The series was formed only by clusters

containing a well-defined number of atoms, and therefore,
characterized by particularly stable structures; thus, these
structures can also be termed “magic-size clusters” (MSCs).
Different families of almost monodisperse CdS clusters of
sizes down to 1.3 nm were reported by Vossmeyer et al.,[10]

whereas CdSe MSCs were observed later in the solution
growth of colloidal nanocrystals[11] and the various cluster
sizes found were explained as arising from the aggregation of
smaller clusters. Soloviev et al. synthesized and crystallized a
homologous series of CdSe cluster molecules[12,13] (very simi-
lar in structure to those reported earlier[8,9]) that were capped
by selenophenol ligands. Also in many high-temperature or-
ganometallic syntheses of colloidal CdSe nanocrystals, either
the transient formation of ultrasmall, highly stable CdSe clus-
ters was noticed,[14,15] or these clusters could be isolated using
size-selective precipitation.[16,17] Recently, one type of CdSe
MSC has been synthesized in a water-in-oil reverse-micelle
system.[18]

Here, we report a method for controlling the sequential
growth in solution of CdSe MSCs of progressively larger sizes.
Each of these types of clusters is characterized by a sharp op-
tical-absorption feature at a well-defined energy. During the
synthesis, the relative populations of the different families of
MSCs varied, as smaller MSCs evolved into larger MSCs. We
can model the time evolution of the concentration of the var-
ious magic sizes using a modification of a continuous-growth
model, by taking into account the much higher stability of the
various MSCs over nanocrystals of any intermediate size.

For the synthesis of the CdSe MSCs reported here a mix-
ture of dodecylamine and nonanoic acid was used to decom-
pose cadmium oxide at 200 °C under an inert atmosphere.
The resulting solution was stabilized at 80 °C and a stock solu-
tion of selenium in trioctylphosphine was injected into the
flask. The temperature was kept at 80 °C throughout the syn-
thesis. The low temperature ensured both slow nucleation and
growth, as it produced large activation barriers for the two
processes. The optical spectra of several aliquots taken during
the synthesis are shown in Figure 1a. Some minutes after the
injection, two well-defined absorption peaks appeared at 330
and 350–360 nm, as well as a shoulder around 384 nm. Over
time, the peak at 330 nm disappeared, the peak at 360 nm
kept losing intensity, the shoulder at 384 nm became a well-
distinct peak, and a new peak showed up at 406 nm. Later, an-
other shoulder appeared at longer wavelengths, which devel-
oped into a new absorption peak centered at 431 nm, fol-
lowed by yet another peak at 447 nm. The position of all
these peaks remained constant over time, whereas their rela-
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tive intensities varied so that the peak at the longest wave-
length exhibited increasing intensity with respect to those at
shorter wavelength, which eventually disappeared.

This behavior points to a size evolution through different
families of increasingly larger clusters with high stabilities. If
in fact these peaks corresponded to various excitonic transi-
tions of a single family of cluster sizes in solution, and these
clusters were steadily growing in size, then the spectral posi-
tions of the peaks would be shifting gradually towards longer
wavelengths, and in addition their relative separation and
their width would change (as their electronic structure is
strongly sensitive to size[19]). Instead, the time evolution of
the optical spectra did not point to a continuous growth but
rather to the formation of new families of MSCs having larger
sizes. Also the optical emission spectra of diluted samples of
the growth solution showed the contribution of different fa-
milies of MSCs (see Supporting Information). Over time, the
average cluster size within each family remained constant,
whereas the relative population of the various families
changed in favor of the one with the largest size.

The graph in Figure 1b is built by stacking several horizon-
tal stripes on top of each other, each of which corresponds to

a color-coded plot of an optical absorption spectrum that had
been collected at progressively longer reaction times. Each
spectrum, that is, each horizontal stripe, is normalized to the
intensity of its dominant peak. Spectra were recorded roughly
every 15 min. On the overall plot, therefore, the wavelength
is reported on the horizontal axis, whereas the reaction time
is reported on the vertical axis. At shorter reaction times
(t < 102 min) only a limited number of spectra could be col-
lected and therefore the corresponding plots were replicated
along the time scale until a new plot was available. As a con-
sequence of this approach in constructing the overall plot, ar-
tificially sharp transitions are seen in it at these short times.
The overall plot shows clearly the persistence over time of the
peaks at 350–360 nm, 384 nm, 406 nm, and 431 nm, which
therefore appear as vertical stripes. Once the various families
of MSCs have evolved such that the peaks at 431–447 nm are
the most intense ones, the overall spectral trends reflect rather
the “continuous” size evolution of traditional nanocrystal
growth kinetics.

The width of the various absorption peaks (see Fig. 1a) sug-
gests that the size distribution within each family was quite
narrow. As an example, the width-at-half-maximum of the
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Figure 1. a) Absorption spectra of the growth solution recorded at different times and containing different populations of MSCs. b) This graph is built
by stacking several horizontal stripes on top of each other, each of which corresponds to a color-coded plot of an optical-absorption spectrum, which
were collected at progressively longer reaction times.



peak centered at 406 nm was approximately 20 nm
(150 meV), which is rather close to the one reported by Ka-
suya et al.[18] for ultrasmall, extremely monodisperse CdSe
nanoparticles prepared in reverse micelles and absorbing
strongly at 415 nm (also approximately 20 nm or only slightly
narrower). The overall growth kinetics did not change much
neither for syntheses carried out at lower temperatures (peak
widths could not be narrowed further) nor at moderately
higher temperatures (peak widths were slightly broader), as in
both cases the changes over time in the relative populations
of the various families of MSCs followed the same trend as
above.

The mechanism by which the growth of these clusters pro-
ceeded in solution is definitely fascinating. At the very sim-
plest level, the size evolution of a nanocrystal can be thought
of as being the result of a competition between the attach-
ment and detachment of single atoms to its surface. Based on
this picture, we have developed a growth model that repro-
duces the time evolution of the relevant absorption features
of the various families of MSCs. The experimental parameters
for the various families of MSCs were extracted by perform-
ing a Gaussian deconvolution of the absorption spectra. For
this fit we assumed that the contribution of a single family of
MSCs consisted of a narrow Gaussian function that represents
the lowest exciton peak and of a much broader Gaussian that
models the absorbance at shorter wavelengths (see the Sup-
porting Information for details). The key assumption of our
model states that once a cluster has grown to a magic size,
such a size is so stable that no atoms can detach from it.
Therefore it can only grow further, but it cannot shrink. Any
cluster with a size intermediate between two magic sizes can
either grow to reach the larger of the two magic sizes, or
shrink to the smaller one. Figure 2 reports with different mar-
ker types the intensities of the exciton peaks from the various
families of MSCs over reaction time as derived from the fit to
the experimental spectra, whereas solid lines represent the
trends in the intensities of such peaks as derived from the pro-

posed growth model. This fitting procedure reflects qualita-
tively the actual trends in the growth of the various families of
MSCs.

A control experiment that supports our model was carried
out. A synthesis of MSCs was performed and thereby the
nanocrystals were extracted from the solution using precipita-
tion and purified by repeated washing. This sample, which
contained different families of MSCs, was redissolved in the
same mixture of surfactants used for the synthesis of MSCs
and the mixture was heated at 80 °C for several hours. There-
fore, all conditions were similar to those used for the synthesis
of MSCs, with the only difference being that no free mono-
mers were present in this experiment. Optical-absorption
spectra on aliquots taken from this mixture at different times
during the heating did not show any remarkable variation in
the intensity of the various peaks, nor any shift in their posi-
tions, indicating no further evolution in the distribution of the
families of MSCs. The results of this control experiment have
two important implications. One is that the various MSCs
were stable and that they did not undergo any shrinking or
ripening process, as opposed to the classical case of a sample
containing a wide distribution of colloidal crystal sizes, for
which Oswald-ripening processes dominate if there is a short-
age of monomers.[20] The other is that no aggregation oc-
curred among smaller clusters to form larger clusters. Both
implications support our growth model.

The novelty of the synthetic approach developed here is
that it yields only MSCs. These are not a side product of a syn-
thesis that yields much larger nanocrystals, nor are much larg-
er nanocrystals formed as a side product in our syntheses.
Furthermore, as the growth is slow, the synthesis is reproduc-
ible and indeed it can be stopped whenever a given distribu-
tion of various families of MSCs is reached. Then, from this
final solution, the largest family of MSCs present can be
isolated using a size-selective precipitation. A typical set of
optical absorption spectra before and after size-selective pre-
cipitation is reported in Figure 3a. The isolation of MSCs of
smaller sizes from this solution is in principle possible but la-
borious, as they are contaminated by a small percentage of
the largest MSCs.

Transmission electron microscopy (TEM) analysis on ali-
quots extracted from the growth solution and on size-selected
samples revealed that these MSCs have roughly spherical
shapes and that they are not aggregated. However, a more de-
tailed analysis based on electron microscopy and aimed at de-
termining average sizes and size distributions was strongly
limited by the extremely small sizes of such clusters. Wide-an-
gle X-ray diffraction analysis on size-selected samples indi-
cated cluster sizes ranging from 1.5 to 2.0 nm for the families
of largest MSCs (those absorbing strongly at 406, 431, and
447 nm, respectively) and elemental analysis of these size-se-
lected and purified clusters showed that they are all Cd-rich,
with Cd/Se ratios ranging from 1.1 to 1.3. No further structural
information could be inferred from mass spectrometry, as the
ionization of these samples in a matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry (MALDI-
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Figure 2. Development over time of the intensities of the individual ab-
sorption peaks from the various MSCs. These were extracted from the
normalized optical absorption spectra, as shown in Figure 1. The families
of smallest MSCs as identified from the optical spectra (those showing a
peak at 330 nm) were not considered in the fit, as their absorption spec-
tra became too weak a few minutes after their formation. Solid lines rep-
resent the fits to these trends using the proposed growth model.



TOF-MS) setup yielded very similar fragmentation patterns,
even for nanocrystals as large as 3 nm in diameter, but did not
yield any clear fingerprints of the original clusters.

The synthesis of different families of MSCs is of technologi-
cal interest as it yields nanocrystals that always have the same
sizes and, therefore, reproducible optical properties, such as,
for instance, the range of emitted light. The CdSe clusters re-
ported in this work displayed considerable emission from trap
states (see Fig. 3a) and band-edge emission was only clearly
visible at very high dilutions. So, after size-selective precipita-
tion, the absorption features were slightly broadened and red-
shifted. Both effects could be the result of stripping off of
some molecules from the surface of the MSCs during clean-
ing. This might have resulted in a partial reconstruction of the
nanocrystal surface, with a concomitant variation of the over-
all electronic properties of the clusters.[21,22] By adding fresh
surfactants, we could partially cancel this effect. Light emis-
sion from these clusters occurred almost exclusively from trap
states. However, when a ZnS shell was grown on the size-se-
lected nanocrystals, such as, for instance, on those originally
absorbing at 406 nm, the resulting core/shell nanocrystals
emitted only from band-edge states (Fig. 3b). The photolumi-
nescence (PL) quantum yield from these samples varied from
synthesis to synthesis (in the range between 35 and 60 %), but
remained constant for each sample, even for a few months
after the synthesis.

A potential application of the blue-light-emitting nanocrys-
tals synthesized in this work is, for instance, a light-emitting

diode. There have been several studies of nanocrystal-based
light-emitting diodes in the last years,[23–28] but only a few de-
vices have been reported so far in which the blue emission ori-
ginated from nanocrystals.[26] We built a blue-light-emitting
diode in which the active layer was a blend of the blue-light-
emitting CdSe/ZnS nanocrystals, prepared as described above,
and 4,4′,N,N′-diphenylcarbazole (CBP). The device, whose ge-
ometry and characteristics are displayed in Figure 3c, showed
an electroluminescence (EL) peak at 485 nm, which is attrib-
uted to the emission of the CdSe/ZnS nanocrystals, in agree-
ment with the PL spectra from a solid film of the same nano-
crystals (Fig. 3c). The red-shift in the emission for the clusters
in the film relative to that for the clusters in solution is attrib-
uted to the energy transfer within the sample.[29] The increase
in peak width of the EL is likely to be an effect of both envi-
ronmental broadening and local heating of the sample under
current flow.[25]

In conclusion, we have reported a method to control the se-
quential growth of CdSe magic-size clusters of progressively
larger sizes. We modeled the time evolution of the concentra-
tion of the various magic sizes using a slight modification of a
continuous-growth model. After the synthesis, we could iso-
late MSCs of a given size and grow a ZnS shell on them. Final-
ly, we demonstrated the fabrication of a hybrid organic/inor-
ganic light-emitting diode based on these nanocrystals with
blue-light emission. The concept of sequential growth of dif-
ferent families of MSCs reported here is of general interest
and can be potentially extended to other materials, provided
that suitable conditions are found to slow down the nucleation
and the growth rate of the nanocrystals. In addition, we be-
lieve that this approach can be followed to synthesize more
elaborate nanostructures, such as, for instance, doped nano-
crystals.[30–36] A route to prepare doped nanocrystals could for
instance be through the controlled formation of extremely
small clusters, such as those reported in this work, but having
a certain number of doping atoms already embedded in them.
It might be likely, for instance, that such small cluster mole-
cules could gain an additional stability (and therefore could
be formed preferentially) if one or more “impurity atoms”
were present in their structure. This possibility is currently un-
der investigation in our groups.

Experimental

Synthesis of Magic-Size CdSe Nanocrystals: 1 g of cadmium oxide
(99.99 %), 4 g of dodecylamine (98 %), and 4 g of nonanoic acid
(97 %) were mixed in a three-necked flask. The flask was pumped to
vacuum at 100 °C for 15 min and then heated to above 200 °C under
nitrogen to decompose the CdO. The temperature was then lowered
to 80 °C and 20 g of a solution of Se in trioctylphosphine (10 % in
weight of Se) was injected. After the injection the temperature
dropped and it was allowed to recover to 80 °C (but not higher). Dur-
ing the growth, 0.1 mL of the growth solution was extracted at time
intervals ranging from 3 min (at the early stages of growth) to several
hours (after several hundred minutes of growth) and diluted into a
known amount of toluene. Therefore, all spectra could be scaled ac-
cording to the dilution factor.
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Figure 3. a) Optical absorption spectra of a sample (yellow) before
size-selective precipitation, and optical absorption (green) and fluores-
cence spectra (blue) after size-selective precipitation. b) Optical ab-
sorption (red) and fluorescence spectra (cyan) of the CdSe/ZnS core/
shell nanocrystals prepared from the size-selected sample of MSCs
shown in (a). c) Photoluminescence from a film of core/shell nano-
crystals (light brown) and EL (brown) from a light-emitting diode based
on these nanocrystals. The inset displays the schematic layout of the
EL device.



Size-Selective Precipitation: After the synthesis, the growth solution
was transferred to a glove-box. Ethyl acetate was added to this solu-
tion, followed by methanol until a persistent cloudiness was observed.
An amount of methanol ranging from 50 to 150 mL was required,
depending on the distribution of MSCs present in the solution. Ethyl
acetate was needed to prevent phase segregation, as methanol and tri-
octylphosphine have a low miscibility. This solution was centrifuged
and the precipitate was washed again by adding few milliliters of ethyl
acetate and methanol. The final precipitate was redissolved in tolu-
ene. By using this procedure, the largest MSCs are almost quantita-
tively separated from the smaller MSCs present.

ZnS Shell Growth: This was carried out following standard pub-
lished procedures [37], except for the shell-growth temperature, which
was set at 80 °C for the first injection and then steadily raised to
120 °C during the following injections. The starting MSCs could not
resist the heating in trioctylphosphine/trioctylphosphine oxide above
80 °C for too long.

Fabrication and Characterization of the Electroluminescent Devices:
Devices consisting of ITO/PEDOT-PSS/CBP:CdSe/ZnS/Al were fab-
ricated as follows. A hole-transporting layer (100 nm) of poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), used
to lower the hole-injection barrier at the indium tin oxide (ITO) sur-
face, was spin-deposited onto a cleaned ITO-coated glass substrate
(120 nm, 15 X square–1). The layer was then heated at 110 °C for
10 min to remove residual solvent. Then, a layer of a blend of CdSe/
ZnS nanocrystals and CBP (100 nm) was spin-coated from a chloro-
form solution on the surface of the PEDOT:PSS layer. Finally, a
150 nm thick Al layer was deposited by thermal-evaporation at a
pressure of 4 × 10–6 mbar (1 bar = 105 Pa). PL spectra were recorded
on thin films and CHCl3 solutions, by using a Cary Eclipse fluo-
rescence spectrophotometer with an intense Xenon flash lamp. Ab-
sorption measurements were carried out using a Cary 5000 UV-vis
spectrophotometer. The EL spectra were measured by a Spectroradi-
ometer OL 770. All the measurements were carried out at room tem-
perature under air.
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