253 research outputs found

    A combinatorial approach to gene expression analysis: DNA microarrays.

    Get PDF
    The microarray technology is based on analytical tools that parallelize the quantitative and qualitative analysis of nucleic acids, proteins and tissue sections one of its more recent evolutions-. By miniaturizing the size of the reaction and sensing area, microarrays allow to assess at the activity of thousands of genes in a given tissue or cell line at once in a rapid and quantitative way, and to carry out serial comparative tests in multiple samples. These tools, that stem from the innovations resulting from the technological improvements and knowledge arising from the genome sequencing projects, can be considered as a combinatorial technique that can rapidly provide significant information about complex cellular pathways and processes within one or few ‘‘mass scale’’ and comprehensive testing of a biological sample’s composition

    Characterization of a surface-active protein extracted from a marine strain of penicillium chrysogenum

    Get PDF
    Marine microorganisms represent a reservoir of new promising secondary metabolites. Surface-active proteins with good emulsification activity can be isolated from fungal species that inhabit the marine environment and can be promising candidates for different biotechnological applications. In this study a novel surface-active protein, named Sap-Pc, was purified from a marine strain of Penicillium chrysogenum. The effect of salt concentration and temperature on protein production was analyzed, and a purification method was set up. The purified protein, identified as Pc13g06930, was annotated as a hypothetical protein. It was able to form emulsions, which were stable for at least one month, with an emulsification index comparable to that of other known surface-active proteins. The surface tension reduction was analyzed as function of protein concentration and a critical micellar concentration of 2 M was determined. At neutral or alkaline pH, secondary structure changes were monitored over time, concurrently with the appearance of protein precipitation. Formation of amyloid-like fibrils of SAP-Pc was demonstrated by spectroscopic and microscopic analyses. Moreover, the effect of protein concentration, a parameter affecting kinetics of fibril formation, was investigated and an on-pathway involvement of micellar aggregates during the fibril formation process was suggested

    Pharmacogenomics and analogues of the antitumor agent N6-isopentenyladenosine.

    Get PDF
    N6-isopentenyladenosine (i6A), a member of the cytokinin family of plant hormones, has potent in vitro antitumour activity in dif- ferent types of human epithelial cancer cell lines. Gene expression profile analysis of i6A-treated cells revealed induction of genes (e.g., PPP1R15A, DNAJB9, DDIT3, and HBP1) involved in the negative regulation of cell cycle progression and reportedly up- regulated during cell cycle arrest in stress conditions. Of 6 i6A analogues synthesized, only the 1 with a saturated double bond of the isopentenyl side chain had in vitro antitumour activity, although weaker than that of i6A, suggesting that i6A biological ac- tivity is highly linked to its structure. In vivo analysis of i6A and the active analogue revealed no significant inhibition of cancer cell growth in mice by either reagent. Thus, although i6A may inhibit cell proliferation by regulating the cell cycle, further studies are needed to identify active analogues potentially useful in vivo

    Quantitative expression profiling of highly degraded RNA from formalin-fixed, paraffin-embedded breast tumor biopsies by oligonucleotide microarrays.

    Get PDF
    Microarray-based gene expression profiling is well suited for parallel quantitative analysis of large numbers of RNAs, but its application to cancer biopsies, particularly formalin-fixed, paraffin-embedded (FFPE) archived tissues, is limited by the poor quality of the RNA recovered. This represents a serious drawback, as FFPE tumor tissue banks are available with clinical and prognostic annotations, which could be exploited for molecular profiling studies, provided that reliable analytical technologies are found. We applied and evaluated here a microarray-based cDNA-mediated annealing, selection, extension and ligation (DASL) assay for analysis of 502 mRNAs in highly degraded total RNA extracted from cultured cells or FFPE breast cancer (MT) biopsies. The study included quantitative and qualitative comparison of data obtained by analysis of the same RNAs with genome-wide oligonucleotide microarrays vs DASL arrays and, by DASL, before and after extensive in vitro RNA fragmentation. The DASL-based expression profiling assay applied to RNA extracted from MCF-7 cells, before or after 24 h stimulation with a mitogenic dose of 17b-estradiol, consistently allowed to detect hormone-induced gene expression changes following extensive RNA degradation in vitro. Comparable results where obtained with tumor RNA extracted from FFPE MT biopsies (6 to 19 years old). The method proved itself sensitive, reproducible and accurate, when compared to results obtained by microarray analysis of RNA extracted from snap-frozen tissue of the same tumor

    Selective inhibition of genomic and non-genomic effects of thyroid hormone regulates muscle cell differentiation and metabolic behavior

    Get PDF
    Thyroid hormones (THs) are key regulators of different biological processes. Their action involves genomic and non-genomic mechanisms, which together mediate the final effects of TH in target tissues. However, the proportion of the two processes and their contribution to the TH-mediated effects are still poorly understood. Skeletal muscle is a classical target tissue for TH, which regulates muscle strength and contraction, as well as energetic metabolism of myofibers. Here we address the different contribution of genomic and non-genomic action of TH in skeletal muscle cells by specifically silencing the deiodinase Dio2 or the β3-Integrin expression via CRISPR/Cas9 technology. We found that myoblast proliferation is inversely regulated by integrin signal and the D2-dependent TH activation. Similarly, inhibition of the nuclear receptor action reduced myoblast proliferation, confirming that genomic action of TH attenuates proliferative rates. Contrarily, genomic and non-genomic signals promote muscle differentiation and the regulation of the redox state. Taken together, our data reveal that integration of genomic and non-genomic signal pathways finely regulates skeletal muscle physiology. These findings not only contribute to the understanding of the mechanisms involved in TH modulation of muscle physiology but also add insight into the interplay between different mechanisms of action of TH in muscle cells

    Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells.

    Get PDF
    Antiestrogens used for breast cancer (BC) treatment differ among each other for the ability to affect estrogen receptor (ER) activity and thereby inhibit hormone-responsive cell functions and viability. We used high-density cDNA microarrays for a comprehensive definition of the gene pathways affected by 17b-estradiol (E2), ICI 182,780 (ICI), 4OH- tamoxifen (Tamoxifen), and raloxifene (RAL) in ER-positive ZR-75.1 cells, a suitable model to investigate estrogen and antiestrogen actions in hormone-responsive BC. The expression of 601 genes was significantly affected by E2 in these cells; in silico analysis reveals that 86 among them include one or more potential ER binding site within or near the promoter and that the binding site signatures for E2F-1, NF-Y, and NRF-1 transcription factors are significantly enriched in the promoters of genes induced by estrogen treatment, while those for CAC-binding protein and LF-A1 in those repressed by the hormone, pointing to novel transcriptional effectors of secondary responses to estrogen in BC cells. Interestingly, expression of 176 E2- regulated mRNAs was unaffected by any of the antiestrogens tested, despite the fact that under the same conditions the transcriptional and cell cycle stimulatory activities of ER were inhibited. On the other hand, of 373 antiestrogen-responsive genes identified here, 52 were unresponsive to estrogen and 25% responded specifically to only one of the compounds tested, revealing non-overlapping and clearly distinguishable effects of the different antiestrogens in BC cells. As some of these differences reflect specificities of the mechanism of action of the antiestrogens tested, we propose to exploit this gene set for characterization of novel hormonal antagonists and selective estrogen receptor modulators (SERMs) and as a tool for testing new associations of antiestrogens, more effective against BC

    Effects of Oestrogen on MicroRNA Expression in Hormone-Responsive Breast Cancer Cells

    Get PDF
    Oestrogen receptor alpha (ERα) is a ligand-dependent transcription factor that mediates oestrogen effects in hormone-responsive cells. Following oestrogenic activation, ERα directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) represent a class of small noncoding RNAs that function as negative regulators of protein-coding gene expression. They are found aberrantly expressed or mutated in cancer, suggesting their crucial role as either oncogenes or tumour suppressor genes. Here, we analysed changes in miRNA expression in response to oestrogen in hormone-responsive breast cancer MCF-7 and ZR-75.1 cells by microarray-mediated expression profiling. This led to the identification of 172 miRNAs up- or down-regulated by ERα in response to 17β-oestradiol, of which 52 are similarly regulated by the hormone in the two cell models investigated. To identify mechanisms by which ERα exerts its effects on oestrogen-responsive miRNA genes, the oestrogen-dependent miRNA expression profiles were integrated with global in vivo ERα binding site mapping in the genome by ChIP-Seq. In addition, data from miRNA and messenger RNA (mRNA) expression profiles obtained under identical experimental conditions were compared to identify relevant miRNA target transcripts. Results show that miRNAs modulated by ERα represent a novel genomic pathway to impact oestrogen-dependent processes that affect hormone-responsive breast cancer cell behaviour. MiRNome analysis in tumour tissues from breast cancer patients confirmed a strong association between expression of these small RNAs and clinical outcome of the disease, although this appears to involve only marginally the oestrogen-regulated miRNAs identified in this study
    • …
    corecore