774 research outputs found

    Viewpoint: Evaluating the impact of malaria control efforts on mortality in sub-Saharan Africa

    No full text
    OBJECTIVE To describe an approach for evaluating the impact of malaria control efforts on malaria-associated mortality in sub-Saharan Africa, where disease-specific mortality trends usually cannot be measured directly and most malaria deaths occur among young children. METHODS Methods for evaluating changes in malaria-associated mortality are examined; advantages and disadvantages are presented. RESULTS All methods require a plausibility argument - i.e., an assumption that mortality reductions can be attributed to programmatic efforts if improvements are found in steps of the causal pathway between intervention scale-up and mortality trends. As different methods provide complementary information, they can be used together. We recommend following trends in the coverage of malaria control interventions, other factors influencing childhood mortality, malaria-associated morbidity (especially anaemia), and all-cause childhood mortality. This approach reflects decreases in malaria's direct and indirect mortality burden and can be examined in nearly all countries. Adding other information can strengthen the plausibility argument: trends in indicators of malaria transmission, information from demographic surveillance systems and sentinel sites where malaria diagnostics are systematically used, and verbal autopsies linked to representative household surveys. Health facility data on malaria deaths have well-recognized limitations; however, in specific circumstances, they could produce reliable trends. Model-based predictions can help describe changes in malaria-specific burden and assist with program management and advocacy. CONCLUSIONS Despite challenges, efforts to reduce malaria-associated mortality in Africa can be evaluated with trends in malaria intervention coverage and all-cause childhood mortality. Where there are resources and interest, complementary data on malaria morbidity and malaria-specific mortality could be added

    Discovery and saturation analysis of cancer genes across 21 tumour types

    Get PDF
    Although a few cancer genes are mutated in a high proportion of tumours of a given type (>20%), most are mutated at intermediate frequencies (2–20%). To explore the feasibility of creating a comprehensive catalogue of cancer genes, we analysed somatic point mutations in exome sequences from 4,742 human cancers and their matched normal-tissue samples across 21 cancer types. We found that large-scale genomic analysis can identify nearly all known cancer genes in these tumour types. Our analysis also identified 33 genes that were not previously known to be significantly mutated in cancer, including genes related to proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis. Down-sampling analysis indicates that larger sample sizes will reveal many more genes mutated at clinically important frequencies. We estimate that near-saturation may be achieved with 600–5,000 samples per tumour type, depending on background mutation frequency. The results may help to guide the next stage of cancer genomics

    Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut

    Get PDF
    Background: Detection of somatic mutations is one of the main goals of next generation DNA sequencing. A wide range of experimental systems are available for the study of spontaneous or environmentally induced mutagenic processes. However, most of the routinely used mutation calling algorithms are not optimised for the simultaneous analysis of multiple samples, or for non-human experimental model systems with no reliable databases of common genetic variations. Most standard tools either require numerous in-house post filtering steps with scarce documentation or take an unpractically long time to run. To overcome these problems, we designed the streamlined IsoMut tool which can be readily adapted to experimental scenarios where the goal is the identification of experimentally induced mutations in multiple isogenic samples. Methods: Using 30 isogenic samples, reliable cohorts of validated mutations were created for testing purposes. Optimal values of the filtering parameters of IsoMut were determined in a thorough and strict optimization procedure based on these test sets. Results: We show that IsoMut, when tuned correctly, decreases the false positive rate compared to conventional tools in a 30 sample experimental setup; and detects not only single nucleotide variations, but short insertions and deletions as well. IsoMut can also be run more than a hundred times faster than the most precise state of art tool, due its straightforward and easily understandable filtering algorithm. Conclusions: IsoMut has already been successfully applied in multiple recent studies to find unique, treatment induced mutations in sets of isogenic samples with very low false positive rates. These types of studies provide an important contribution to determining the mutagenic effect of environmental agents or genetic defects, and IsoMut turned out to be an invaluable tool in the analysis of such data. © 2017 The Author(s)

    Human brain harbors single nucleotide somatic variations in functionally relevant genes possibly mediated by oxidative stress

    Get PDF
    Somatic variation in DNA can cause cells to deviate from the preordained genomic path in both disease and healthy conditions. Here, using exome sequencing of paired tissue samples, we show that the normal human brain harbors somatic single base variations measuring up to 0.48% of the total variations. Interestingly, about 64% of these somatic variations in the brain are expected to lead to non-synonymous changes, and as much as 87% of these represent G:C>T:A transversion events. Further, the transversion events in the brain were mostly found in the frontal cortex, whereas the corpus callosum from the same individuals harbors the reference genotype. We found a significantly higher amount of 8-OHdG (oxidative stress marker) in the frontal cortex compared to the corpus callosum of the same subjects (p<0.01), correlating with the higher G:C>T:A transversions in the cortex. We found significant enrichment for axon guidance and related pathways for genes harbouring somatic variations. This could represent either a directed selection of genetic variations in these pathways or increased susceptibility of some loci towards oxidative stress. This study highlights that oxidative stress possibly influence single nucleotide somatic variations in normal human brain

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences

    Get PDF
    Pleuropulmonary blastoma is a rare childhood malignancy of lung mesenchymal cells that can remain dormant as epithelial cysts or progress to high-grade sarcoma. Predisposing germline loss-of-function DICER1 variants have been described. We sought to uncover additional contributors through whole exome sequencing of 15 tumor/normal pairs, followed by targeted resequencing, miRNA analysis and immunohistochemical analysis of additional tumors. In addition to frequent biallelic loss of TP53 and mutations of NRAS or BRAF in some cases, each case had compound disruption of DICER1: a germline (12 cases) or somatic (3 cases) loss-of-function variant plus a somatic missense mutation in the RNase IIIb domain. 5p-Derived microRNA (miRNA) transcripts retained abnormal precursor miRNA loop sequences normally removed by DICER1. This work both defines a genetic interaction landscape with DICER1 mutation and provides evidence for alteration in miRNA transcripts as a consequence of DICER1 disruption in cancer

    The AURORA pilot study for molecular screening of patients with advanced breast cancer–a study of the breast international group

    Get PDF
    Several studies have demonstrated the feasibility of molecular screening of tumour samples for matching patients with cancer to targeted therapies. However, most of them have been carried out at institutional or national level. Herein, we report on the pilot phase of AURORA (NCT02102165), a European multinational collaborative molecular screening initiative for advanced breast cancer patients. Forty-one patients were prospectively enroled at four participating centres across Europe. Metastatic tumours were biopsied and profiled using an Ion Torrent sequencing platform at a central facility. Sequencing results were obtained for 63% of the patients in real-time with variable turnaround time stemming from delays between patient consent and biopsy. At least one clinically actionable mutation was identified in 73% of patients. We used the Illumina sequencing technology for orthogonal validation and achieved an average of 66% concordance of substitution calls per patient. Additionally, copy number aberrations inferred from the Ion Torrent sequencing were compared to single nucleotide polymorphism arrays and found to be 59% concordant on average. Although this study demonstrates that powerful next generation genomic techniques are logistically ready for international molecular screening programs in routine clinical settings, technical challenges remain to be addressed in order to ensure the accuracy and clinical utility of the genomic data.info:eu-repo/semantics/publishe

    Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes

    Get PDF
    Detection of somatic mutations in human leukocyte antigen (HLA) genes using whole-exome sequencing (WES) is hampered by the high polymorphism of the HLA loci, which prevents alignment of sequencing reads to the human reference genome. We describe a computational pipeline that enables accurate inference of germline alleles of class I HLA-A, B and C genes and subsequent detection of mutations in these genes using the inferred alleles as a reference. Analysis of WES data from 7,930 pairs of tumor and healthy tissue from the same patient revealed 298 nonsilent HLA mutations in tumors from 266 patients. These 298 mutations are enriched for likely functional mutations, including putative loss-of-function events. Recurrence of mutations suggested that these \u27hotspot\u27 sites were positively selected. Cancers with recurrent somatic HLA mutations were associated with upregulation of signatures of cytolytic activity characteristic of tumor infiltration by effector lymphocytes, supporting immune evasion by altered HLA function as a contributory mechanism in cancer
    corecore