34 research outputs found

    Vibrational Spectroscopy of Platinum(II) Complexes Relevant in Antitumor Activity

    Get PDF
    International audienceCisplatin (cis-diamminedichloroplatinum(II) is the first platinum-based antitumor agent, and it is still widely used in chemotherapy. In the cytoplasm, the administered drug undergoes spontaneous hydrolysis by nucleophilic substitution of chloride with water. The cationic chloro-monoaqua form, cis-[PtCl(NH3)2(H2O)]+, characterized by a pKa value of 6.5, is the relevant intermediate at physiological pH, that can ultimately give rise to DNA and protein adducts through easy substitution of water by nitrogen/sulfur donor ligands. Electrospray ionization has allowed cis- and trans-[PtCl(NH3)2(H2O)]+ species to be obtained as free ions in the gas phase where they were sampled by infrared multiple photon dissociation (IRMPD) spectroscopy in the NH/OH stretching frequency range (3200−3800 cm−1), using a tabletop optical parametric oscillator/amplifier (OPO/OPA) laser system coupled to a quadrupole ion trap mass spectromete

    Uncovering the nature of transient and metastable non-equilibrium phases in 1TT-TaS2_2

    Full text link
    Complex systems are characterized by strong coupling between different microscopic degrees of freedom. Photoexcitation of such materials can drive them into new transient and long-lived hidden phases that may not have any counterparts in equilibrium. By exploiting femtosecond time- and angle-resolved photoemission spectroscopy, we probe the photoinduced transient phase and the recovery dynamics of the ground state in a complex material: the charge density wave (CDW)-Mott insulator 1TT-TaS2_2. We reveal striking similarities between the band structures of the transient phase and the (equilibrium) structurally undistorted metallic phase, with evidence for the coexistence of the low-temperature Mott insulating phase and high-temperature metallic phase. Following the transient phase, we find that the restoration of the Mott and CDW order begins around the same time. This highlights that the Mott transition is tied to the CDW structural distortion, although earlier studies have shown that the collapse of Mott and CDW phases are decoupled from each other. Interestingly, as the suppressed order starts to recover, a long-lived metastable phase emerges before the material recovers to the ground state. Our results demonstrate that it is the CDW lattice order that drives the material into this metastable phase, which is indeed a commensurate CDW-Mott insulating phase but with a smaller CDW amplitude. Moreover, we find that the long-lived state emerges only under strong photoexcitation and has no evidence when the photoexcitation strength is weak

    Ultrafast Structural Dynamics along the β − γ Phase Transition Path in MnAs

    Get PDF
    International audienceWe investigate the orthorhombic distortion and the structural dynamics of epitaxial MnAs layers on GaAs(001) using static and time-resolved x-ray diffraction. Laser-induced intensity oscillations of Bragg reflections allow us to identify the optical phonon associated with orthorhombic distortion and to follow its softening along the path towards an undistorted phase of hexagonal symmetry. The frequency of this mode falls in the THz range, in agreement with recent calculations. Incomplete softening suggests that the βγ\beta-\gamma transformation deviates from a purely second-order displacive transition

    Carbon and Nitrogen K-Edge NEXAFS Spectra of Indole, 2,3-Dihydro-7-azaindole, and 3-Formylindole

    Get PDF
    The near-edge X-ray absorption fine structure (NEXAFS) spectra of indole, 2,3-dihydro-7-azaindole, and 3-formylindole in the gas phase have been measured at the carbon and nitrogen K-edges. The spectral features have been interpreted based on density functional theory (DFT) calculations within the transition potential (TP) scheme, which is accurate enough for a general description of the measured C 1s NEXAFS spectra as well as for the assignment of the most relevant features. For the nitrogen K-edge, the agreement between experimental data and theoretical spectra calculated with TP-DFT was not quite satisfactory. This discrepancy was mainly attributed to the many-body effects associated with the excitation of the core electron, which are better described using the time-dependent density functional theory (TDDFT) with the range-separated hybrid functional CAM-B3LYP. An assignment of the measured N 1s NEXAFS spectral features has been proposed together with a complete description of the observed resonances. Intense transitions from core levels to unoccupied antibonding π* states as well as several transitions with mixed-valence/Rydberg or pure Rydberg character have been observed in the C and N K-edge spectra of all investigated indoles

    Probing the competition among different coordination motifs in metal-ciprofloxacin complexes through IRMPD spectroscopy and DFT calculations

    Get PDF
    The vibrational spectra of ciprofloxacin complexes with monovalent (Li+, Na+, K+, Ag+) and polyvalent (Mg2+, Al3+) metal ions are recorded in the range 1000-1900 cm(-1) by means of infrared multiple-photon dissociation (IRMPD) spectroscopy. The IRMPD spectra are analyzed and interpreted in the light of density functional theory (DFT)-based quantum chemical calculations in order to identify the possible structures present under our experimental conditions. For each metal-ciprofloxacin complex, four isomers are predicted, considering different chelation patterns. A good agreement is found between the measured IRMPD spectrum and the calculated absorption spectrum of the most stable isomer for each complex. Metal ion size and charge are found to drive the competition among the different coordination motifs: small size and high charge density metal ions prefer to coordinate the quinolone between the two carbonyl oxygen atoms, whereas large-size metal ions prefer the carboxylate group as a coordination site. In the latter case, an intramolecular hydrogen bond compensates the weaker interaction established by these cations. The role of the metal cation on the stabilization of ionic and nonionic structures of ciprofloxacin is also investigated. It is found that large-size metal ions preferentially stabilize charge separated motifs and that the increase of metal ion charge has a stabilizing effect on the zwitterionic form of ciprofloxacin

    Experimental and computational Investigation of salophen-Zn gas phase complexes with cations: a source of possible interference in anionic recognition

    No full text
    We explore the possibility that protonated molecular ions might be an unexpected source of interference in the recognition process of anions and neutral species by Zn-salophen receptors. Zn-salophen complexes are known to bind anions and neutral molecules in solution. We present here evidence (from computational work and IRMPD spectroscopy) that these complexes can also be the binding site for protonated pyridine or quinuclidine. The resulting binding pattern does not involve the Zn ion, but one of the oxygen atoms directly attached to it. The resulting complex therefore turns out to have a positive charge adjacent to the Zn-salophen binding site. This finding seems to point to the existence of an interfering factor in the quantification of the experimental data about the association constant

    Probing the Competition among Different Coordination Motifs in Metal–Ciprofloxacin Complexes through IRMPD Spectroscopy and DFT Calculations

    No full text
    The vibrational spectra of ciprofloxacin complexes with monovalent (Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Ag<sup>+</sup>) and polyvalent (Mg<sup>2+</sup>, Al<sup>3+</sup>) metal ions are recorded in the range 1000–1900 cm<sup>–1</sup> by means of infrared multiple-photon dissociation (IRMPD) spectroscopy. The IRMPD spectra are analyzed and interpreted in the light of density functional theory (DFT)-based quantum chemical calculations in order to identify the possible structures present under our experimental conditions. For each metal–ciprofloxacin complex, four isomers are predicted, considering different chelation patterns. A good agreement is found between the measured IRMPD spectrum and the calculated absorption spectrum of the most stable isomer for each complex. Metal ion size and charge are found to drive the competition among the different coordination motifs: small size and high charge density metal ions prefer to coordinate the quinolone between the two carbonyl oxygen atoms, whereas large-size metal ions prefer the carboxylate group as a coordination site. In the latter case, an intramolecular hydrogen bond compensates the weaker interaction established by these cations. The role of the metal cation on the stabilization of ionic and nonionic structures of ciprofloxacin is also investigated. It is found that large-size metal ions preferentially stabilize charge separated motifs and that the increase of metal ion charge has a stabilizing effect on the zwitterionic form of ciprofloxacin

    Vibrational signatures of the naked aqua complexes from platinum(II) anticancer drugs

    No full text
    A computational and vibrational spectroscopic study of the aqua complexes obtained by hydrolysis of cis-and trans-diamminedichloroplatinum(II) is reported. Electrospray ionization has allowed cis-and trans-[PtCl(NH 3)2(H2O)]+ species to be obtained as free ions in the gas phase where they were sampled by infrared multiple photon dissociation (IRMPD) spectroscopy in the NH/OH stretching frequency range (3200-3800 cm-1). The experimental features have been assigned by comparison with the linear IR spectra calculated for the optimized structures, revealing vibrational signatures characteristic of the two isomers. © 2013 American Chemical Society
    corecore