219 research outputs found

    Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study.

    Get PDF
    BackgroundA feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI.MethodsIn this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed.ResultsThe results show that, in DCM mode and at (10-13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent.ConclusionsWe showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector's dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could be employed also for other low light levels applications, such as bioluminescence

    OVOL2 impairs RHO GTPase signaling to restrain mitosis and aggressiveness of Anaplastic Thyroid Cancer

    Get PDF
    Background: Anaplastic Thyroid Cancer (ATC) is an undifferentiated and aggressive tumor that often originates from well-Differentiated Thyroid Carcinoma (DTC) through a trans-differentiation process. Epithelial-to-Mesenchymal Transition (EMT) is recognized as one of the major players of this process. OVOL2 is a transcription factor (TF) that promotes epithelial differentiation and restrains EMT during embryonic development. OVOL2 loss in some types of cancers is linked to aggressiveness and poor prognosis. Here, we aim to clarify the unexplored role of OVOL2 in ATC. Methods: Gene expression analysis in thyroid cancer patients and cell lines showed that OVOL2 is mainly associated with epithelial features and its expression is deeply impaired in ATC. To assess OVOL2 function, we established an OVOL2-overexpression model in ATC cell lines and evaluated its effects by analyzing gene expression, proliferation, invasion and migration abilities, cell cycle, specific protein localization through immunofluorescence staining. RNA-seq profiling showed that OVOL2 controls a complex network of genes converging on cell cycle and mitosis regulation and Chromatin Immunoprecipitation identified new OVOL2 target genes. Results: Coherently with its reported function, OVOL2 re-expression restrained EMT and aggressiveness in ATC cells. Unexpectedly, we observed that it caused G2/M block, a consequent reduction in cell proliferation and an increase in cell death. This phenotype was associated to generalized abnormalities in the mitotic spindle structure and cytoskeletal organization. By RNA-seq experiments, we showed that many pathways related to cytoskeleton and migration, cell cycle and mitosis are profoundly affected by OVOL2 expression, in particular the RHO-GTPase pathway resulted as the most interesting. We demonstrated that RHO GTPase pathway is the central hub of OVOL2-mediated program in ATC and that OVOL2 transcriptionally inhibits RhoU and RhoJ. Silencing of RhoU recapitulated the OVOL2-driven phenotype pointing to this protein as a crucial target of OVOL2 in ATC. Conclusions: Collectively, these data describe the role of OVOL2 in ATC and uncover a novel function of this TF in inhibiting the RHO GTPase pathway interlacing its effects on EMT, cytoskeleton dynamics and mitosis

    Endogenous extracellular matrix regulates the response of osteosarcoma 3D spheroids to doxorubicin

    Get PDF
    The extracellular matrix (ECM) modulates cell behavior, shape, and viability as well as mechanical properties. In recent years, ECM disregulation and aberrant remodeling has gained considerable attention in cancer targeting and prevention since it may stimulate tumorigenesis and metastasis. Here, we developed an in vitro model that aims at mimicking the in vivo tumor microenvironment by recapitulating the interactions between osteosarcoma (OS) cells and ECM with respect to cancer progression. We long-term cultured 3D OS spheroids made of metastatic or non-metastatic OS cells mixed with mesenchymal stromal cells (MSCs); confirmed the deposition of ECM proteins such as Type I collagen, Type III collagen, and fibronectin by the stromal component at the interface between tumor cells and MSCs; and found that ECM secretion is inhibited by a neutralizing anti-IL-6 antibody, suggesting a new role of this cytokine in OS ECM deposition. Most importantly, we showed that the cytotoxic effect of doxorubicin is reduced by the presence of Type I collagen. We thus conclude that ECM protein deposition is crucial for modelling and studying drug response. Our results also suggest that targeting ECM proteins might improve the outcome of a subset of chemoresistant tumors

    Adding pieces to the puzzle of differentiated-to-anaplastic thyroid cancer evolution: the oncogene E2F7

    Get PDF
    Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells’ aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process

    Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization

    Get PDF
    Tumors build vessels by cooption of pre-existing vasculature and de novo recruitment of bone marrow (BM)-derived endothelial progenitor cells (EPCs). However, the contribution and the functional role of EPCs in tumor neoangiogenesis are controversial. Therefore, by using genetically marked BM progenitor cells, we demonstrate the precise spatial and temporal contribution of EPCs to the neovascularization of three transplanted and one spontaneous breast tumor in vivo using high-resolution microscopy and flow cytometry. We show that early tumors recruit BM-derived EPCs that differentiate into mature BM-derived endothelial cells (ECs) and luminally incorporate into a subset of sprouting tumor neovessels. Notably, in later tumors, these BM-derived vessels are diluted with non-BM-derived vessels from the periphery, which accounts for purported differences in previously published reports. Furthermore, we show that specific ablation of BM-derived EPCs with alpha-particle-emitting anti-VE-cadherin antibody markedly impaired tumor growth associated with reduced vascularization. Our results demonstrate that BM-derived EPCs are critical components of the earliest phases of tumor neoangiogenesis

    The novel lncRNA BlackMamba controls the neoplastic phenotype of ALK- anaplastic large cell lymphoma by regulating the DNA helicase HELLS.

    Get PDF
    The molecular mechanisms leading to the transformation of anaplastic lymphoma kinase negative (ALK-) anaplastic large cell lymphoma (ALCL) have been only in part elucidated. To identify new culprits which promote and drive ALCL, we performed a total transcriptome sequencing and discovered 1208 previously unknown intergenic long noncoding RNAs (lncRNAs), including 18 lncRNAs preferentially expressed in ALCL. We selected an unknown lncRNA, BlackMamba, with an ALK- ALCL preferential expression, for molecular and functional studies. BlackMamba is a chromatin-associated lncRNA regulated by STAT3 via a canonical transcriptional signaling pathway. Knockdown experiments demonstrated that BlackMamba contributes to the pathogenesis of ALCL regulating cell growth and cell morphology. Mechanistically, BlackMamba interacts with the DNA helicase HELLS controlling its recruitment to the promoter regions of cell-architecture-related genes, fostering their expression. Collectively, these findings provide evidence of a previously unknown tumorigenic role of STAT3 via a lncRNA-DNA helicase axis and reveal an undiscovered role for lncRNA in the maintenance of the neoplastic phenotype of ALK-ALCL

    Genome sequences of three SARS-CoV-2 P.1 strains identified from patients returning from Brazil to Italy

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. We report the complete sequences of three SARS-CoV-2 P.1 strains obtained from nasopharyngeal swab specimens from three patients returning from Brazil to Italy

    Tollip Is a Mediator of Protein Sumoylation

    Get PDF
    Tollip is an interactor of the interleukin-1 receptor involved in its activation. The endosomal turnover of ubiquitylated IL-1RI is also controlled by Tollip. Furthermore, together with Tom1, Tollip has a general role in endosomal protein traffic. This work shows that Tollip is involved in the sumoylation process. Using the yeast two-hybrid technique, we have isolated new Tollip partners including two sumoylation enzymes, SUMO-1 and the transcriptional repressor Daxx. The interactions were confirmed by GST-pull down experiments and immunoprecipitation of the co-expressed recombinants. More specifically, we show that the TIR domain of the cytoplasmic region of IL-1RI is a sumoylation target of Tollip. The sumoylated and unsumoylated RanGAP-1 protein also interacts with Tollip, suggesting a possible role in RanGAP-1 modification and nuclear-cytoplasmic protein translocation. In fact, Tollip is found in the nuclear bodies of SAOS-2/IL-1RI cells where it colocalizes with SUMO-1 and the Daxx repressor. We conclude that Tollip is involved in the control of both nuclear and cytoplasmic protein traffic, through two different and often contrasting processes: ubiquitylation and sumoylation

    An essential role for the Id1/PI3K/Akt/NFkB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro

    Get PDF
    The enhancement of re-endothelialisation is a critical therapeutic option for repairing injured blood vessels. Endothelial progenitor cells (EPCs) are the major source of cells that participate in endothelium repair and contribute to re-endothelialisation by reducing neointima formation after vascular injury. The over-expression of the inhibitor of differentiation or DNA binding 1 (Id1) significantly improved EPC proliferation. This study aimed to investigate the effects of Id1 on the phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor kappa B (NFκB)/survivin signalling pathway and its significance in promoting EPC proliferation in vitro. Spleen-derived EPCs were cultured as previously described. Id1 was presented at low levels in EPCs, and was rapidly up-regulated by stimulation with vascular endothelial growth factor. We demonstrated that transient transfection of Id1 into EPCs activated the PI3K/Akt/NFκB/survivin signalling pathway and promoted EPC proliferation. The proliferation of EPCs was extensively inhibited by silencing of endogenous Id1, and knockdown of Id1 expression led to suppression of PI3K/Akt/NFκB/survivin signalling pathway in EPCs. In addition, blockade by the PI3K-specific inhibitor LY294002, Akt inhibitor, the NFκB inhibitor BAY 11-7082, the survivin inhibitor Curcumin, or the survivin inhibitor YM155 reduced the effects of Id1 transfection. These results suggest that the Id1/PI3K/Akt/NFκB/survivin signalling pathway plays a critical role in EPC proliferation. The Id1/PI3K/Akt/NFκB/survivin signalling pathway may represent a novel therapeutic target in the prevention of restenosis after vascular injury

    The foot (Fragmentation Of Target) experiment

    Get PDF
    Particle therapy uses proton or 12C beams for the treatment of deep-seated solid tumors. Due to the features of energy deposition of charged particles a small amount of dose is released to the healthy tissue in the beam entrance region, while the maximum of the dose is released to the tumor at the end of the beam range, in the Bragg peak region. However nuclear interactions between beam and patient tissues induce fragmentation both of projectile and target and must be carefully taken into account. In 12C treatments the main concern are long range fragments due to projectile fragmentation that release dose in the healthy tissue after the tumor, while in proton treatment the target fragmentation produces low energy, short range fragments along all the beam range. The FOOT experiment (FragmentatiOn Of Target) is designed to study these processes. Target nuclei (16O,12C) fragmentation induced by 150-250 AMeV proton beam will be studied via inverse kinematic approach. 16O,12C therapeutic beams, with the quoted kinetic energy, collide on graphite and hydrocarbons target to provide the cross section on Hydrogen. This configuration explores also the projectile fragmentation of these 16O,12C beams. The detector includes a magnetic spectrometer based on silicon pixel detectors and drift chamber, a scintillating crystal calorimeter with TOF capabilities, able to stop the heavier fragments produced, and a \u394E detector to achieve the needed energy resolution and particle identification. An alternative setup of the experiment will exploit the emulsion chamber capabilities. A specific emulsion chambers will be coupled with the interaction region of the FOOT setup to measure the production in target fragmentation of light charged fragments as protons, deuterons, tritons and Helium nuclei. The FOOT data taking is foreseen at the CNAO experimental room and will start during early 2018 with the emulsion setup, while the complete electronic detector will take data since 2019
    corecore