1,569 research outputs found
Numerical study of jets produced by conical wire arrays on the Magpie pulsed power generator
The aim of this work is to model the jets produced by conical wire arrays on
the MAGPIE generator, and to design and test new setups to strengthen the link
between laboratory and astrophysical jets. We performed the modelling with
direct three-dimensional magneto-hydro-dynamic numerical simulations using the
code GORGON. We applied our code to the typical MAGPIE setup and we
successfully reproduced the experiments. We found that a minimum resolution of
approximately 100 is required to retrieve the unstable character of the jet. We
investigated the effect of changing the number of wires and found that arrays
with less wires produce more unstable jets, and that this effect has magnetic
origin. Finally, we studied the behaviour of the conical array together with a
conical shield on top of it to reduce the presence of unwanted low density
plasma flows. The resulting jet is shorter and less dense.Comment: Accepted for publication in Astrophysics & Space Science. HEDLA 2010
conference procedings. Final pubblication will be available on Springe
Discovery and Atmospheric Characterization of Giant Planet Kepler-12b: An Inflated Radius Outlier
We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 ± 0.030 R_J is among the handful of planets with super-inflated radii above 1.65 R_J. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 ± 0.041 M_J planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 ± 0.010 g cm^(–3). We detect the occultation of the planet at a significance of 3.7σ in the Kepler bandpass. This yields a geometric albedo of 0.14 ± 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7σ and 4σ in the 3.6 and 4.5 μm bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1σ) and e < 0.09 (3σ). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets
21cm Forest with the SKA
An alternative to both the tomography technique and the power spectrum
approach is to search for the 21cm forest, that is the 21cm absorption features
against high-z radio loud sources caused by the intervening cold neutral
intergalactic medium (IGM) and collapsed structures. Although the existence of
high-z radio loud sources has not been confirmed yet, SKA-low would be the
instrument of choice to find such sources as they are expected to have spectra
steeper than their lower-z counterparts. Since the strongest absorption
features arise from small scale structures (few tens of physical kpc, or even
lower), the 21cm forest can probe the HI density power spectrum on small scales
not amenable to measurements by any other means. Also, it can be a unique probe
of the heating process and the thermal history of the early universe, as the
signal is strongly dependent on the IGM temperature. Here we show what SKA1-low
could do in terms of detecting the 21cm forest in the redshift range z =
7.5-15.Comment: Accepted for publication in the SKA Science Book 'Advancing
Astrophysics with the Square Kilometre Array', to appear in 2015; 10 pages, 5
figures; the manuscript is based on Ciardi et al., 2013, MNRAS, 428, 175
Enabling Radiative Transfer on AMR grids in CRASH
We introduce CRASH-AMR, a new version of the cosmological Radiative Transfer
(RT) code CRASH, enabled to use refined grids. This new feature allows us to
attain higher resolution in our RT simulations and thus to describe more
accurately ionisation and temperature patterns in high density regions. We have
tested CRASH-AMR by simulating the evolution of an ionised region produced by a
single source embedded in gas at constant density, as well as by a more
realistic configuration of multiple sources in an inhomogeneous density field.
While we find an excellent agreement with the previous version of CRASH when
the AMR feature is disabled, showing that no numerical artifact has been
introduced in CRASH-AMR, when additional refinement levels are used the code
can simulate more accurately the physics of ionised gas in high density
regions. This result has been attained at no computational loss, as RT
simulations on AMR grids with maximum resolution equivalent to that of a
uniform cartesian grid can be run with a gain of up to 60% in computational
time.Comment: 19 pages, 17 figures. MNRAS, in pres
Interferometric Evidence for Resolved Warm Dust in the DQ Tau System
We report on near-infrared (IR) interferometric observations of the
double-lined pre-main sequence (PMS) binary system DQ Tau. We model these data
with a visual orbit for DQ Tau supported by the spectroscopic orbit & analysis
of \citet{Mathieu1997}. Further, DQ Tau exhibits significant near-IR excess;
modeling our data requires inclusion of near-IR light from an 'excess' source.
Remarkably the excess source is resolved in our data, similar in scale to the
binary itself ( 0.2 AU at apastron), rather than the larger circumbinary
disk ( 0.4 AU radius). Our observations support the \citet{Mathieu1997}
and \citet{Carr2001} inference of significant warm material near the DQ Tau
binary.Comment: 14 pgs, 3 figures, ApJL in pres
Curved Herbig-Haro Jets: Simulations and Experiments
Herbig-Haro jets often show some degree of curvature along their path, in
many cases produced by the ram pressure of a side-wind. We present simulations
of both laboratory and astrophysical curved jets and experimental results from
laboratory experiments. We discuss the properties and similarities of the
laboratory and astrophysical flow, which show the formation of internal shocks
and working surfaces. In particular the results illustrate how the break-up of
the bow-shock and clumps in the flow are produced without invoking jet
variability; we also discuss how jet rotation reduces the growth of the
Rayleigh-Taylor instability in curved jets.Comment: 15 pages, 5 figure, accepted to be published in The Astrophysical
Journa
Pulsed Accretion in the T Tauri Binary TWA 3A
TWA 3A is the most recent addition to a small group of young binary systems
that both actively accrete from a circumbinary disk and have spectroscopic
orbital solutions. As such, it provides a unique opportunity to test binary
accretion theory in a well-constrained setting. To examine TWA 3A's
time-variable accretion behavior, we have conducted a two-year, optical
photometric monitoring campaign, obtaining dense orbital phase coverage (~20
observations per orbit) for ~15 orbital periods. From U-band measurements we
derive the time-dependent binary mass accretion rate, finding bursts of
accretion near each periastron passage. On average, these enhanced accretion
events evolve over orbital phases 0.85 to 1.05, reaching their peak at
periastron. The specific accretion rate increases above the quiescent value by
a factor of ~4 on average but the peak can be as high as an order of magnitude
in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in
good agreement with numerical simulations of binary accretion with similar
orbital parameters. In these simulations, periastron accretion bursts are
fueled by periodic streams of material from the circumbinary disk that are
driven by the binary orbit. We find that TWA 3A's average accretion behavior is
remarkably similar to DQ Tau, another T Tauri binary with similar orbital
parameters, but with significantly less variability from orbit to orbit. This
is only the second clear case of orbital-phase-dependent accretion in a T Tauri
binary.Comment: 6 pages, 4 figure
A Lyman alpha emitter at z = 6.5 found with slitless spectroscopy
We report the discovery of a Lyman alpha emitting galaxy at z = 6.518. The
single line was found in the 43 square arcmin VLT/FORS field by slitless
spectroscopy limited to the atmospheric window at 9100 A (sampling Lya at 6.4 <
z < 6.6). Its counterpart is undetected in a deep I band image and the line has
an asymmetric appearance in a deeper follow-up spectrum. There are no plausible
line identifications except for Lya with a flux of 1.9x10^-17 erg/s/cm2 and
rest frame equivalent width > 80 A. The lower limit to the star formation rate
density at z = 6.5 derived from our complete sample is 5x10^-4
M_sol/year/Mpc^3, consistent with measurements in the Subaru Deep Field and
Hubble Ultra Deep Field but approximately ten times higher than in the Large
Area Lyman Alpha survey. This Lya emitter is among the very small sample of
highest redshift galaxies known.Comment: Accepted as Letter by A&A, 5 pages, 7 figures, one typo correcte
The 21cm Signature of the First Stars
We predict the 21-cm signature of the first metal-free stars. The soft X-rays
emitted by these stars penetrate the atomic medium around their host halos,
generating Lyman alpha photons that couple the spin and kinetic temperatures.
These creates a region we call the Lyman alpha sphere, visible in 21-cm against
the CMB, which is much larger than the HII region produced by the same star.
The spin and kinetic temperatures are strongly coupled before the X-rays can
substantially heat the medium, implying that a strong 21-cm absorption signal
from the adiabatically cooled gas in Hubble expansion around the star is
expected when the medium has not been heated previously. A central region of
emission from the gas heated by the soft X-rays is also present although with a
weaker signal than the absorption. The Lyman alpha sphere is a universal
signature that should be observed around any first star illuminating its
vicinity for the first time. The 21-cm radial profile of the Lyman alpha sphere
can be calculated as a function of the luminosity, spectrum and age of the
star. For a star of a few hundred solar masses and zero metallicity (as
expected for the first stars), the physical radius of the Lyman alpha sphere
can reach tens of kiloparsecs. The first metal-free stars should be strongly
clustered because of high cosmic biasing; this implies that the regions
producing a 21-cm absorption signal may contain more than one star and will
generally be irregular and not spherical, because of the complex distribution
of the gas. We discuss the feasiblity of detecting these Lyman alpha spheres,
which would be present at redshifts in the Cold Dark Matter model.
Their observation would represent a direct proof of the detection of a first
star.Comment: replaced with ApJ accepted version. Many minor revisions and
additional references, major results unchange
- …