214 research outputs found

    Linearity in the non-deterministic call-by-value setting

    Full text link
    We consider the non-deterministic extension of the call-by-value lambda calculus, which corresponds to the additive fragment of the linear-algebraic lambda-calculus. We define a fine-grained type system, capturing the right linearity present in such formalisms. After proving the subject reduction and the strong normalisation properties, we propose a translation of this calculus into the System F with pairs, which corresponds to a non linear fragment of linear logic. The translation provides a deeper understanding of the linearity in our setting.Comment: 15 pages. To appear in WoLLIC 201

    Call-by-value non-determinism in a linear logic type discipline

    Get PDF
    We consider the call-by-value lambda-calculus extended with a may-convergent non-deterministic choice and a must-convergent parallel composition. Inspired by recent works on the relational semantics of linear logic and non-idempotent intersection types, we endow this calculus with a type system based on the so-called Girard's second translation of intuitionistic logic into linear logic. We prove that a term is typable if and only if it is converging, and that its typing tree carries enough information to give a bound on the length of its lazy call-by-value reduction. Moreover, when the typing tree is minimal, such a bound becomes the exact length of the reduction

    Intersection types for unbind and rebind

    Full text link
    We define a type system with intersection types for an extension of lambda-calculus with unbind and rebind operators. In this calculus, a term with free variables, representing open code, can be packed into an "unbound" term, and passed around as a value. In order to execute inside code, an unbound term should be explicitly rebound at the point where it is used. Unbinding and rebinding are hierarchical, that is, the term can contain arbitrarily nested unbound terms, whose inside code can only be executed after a sequence of rebinds has been applied. Correspondingly, types are decorated with levels, and a term has type decorated with k if it needs k rebinds in order to reduce to a value. With intersection types we model the fact that a term can be used differently in contexts providing different numbers of unbinds. In particular, top-level terms, that is, terms not requiring unbinds to reduce to values, should have a value type, that is, an intersection type where at least one element has level 0. With the proposed intersection type system we get soundness under the call-by-value strategy, an issue which was not resolved by previous type systems.Comment: In Proceedings ITRS 2010, arXiv:1101.410

    On duality relations for session types

    Get PDF
    Session types are a type formalism used to describe communication protocols over private session channels. Each participant in a binary session owns one endpoint of a session channel. A key notion is that of duality: the endpoints of a session channel should have dual session types in order to guarantee communication safety. Duality relations have been independently defined in different ways and different works, without considering their effect on the type system. In this paper we systematically study the existing duality relations and some new ones, and compare them in order to understand their expressiveness. The outcome is that those relations are split into two groups, one related to the na¨ıve inductive duality, and the other related to a notion of mutual compliance, which we borrow from the literature on contracts for web-services

    Proteoliposomes as matrix vesicles' biomimetics to study the initiation of skeletal mineralization

    Get PDF
    During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants

    A discrimination algorithm inside λ-β-calculus

    Get PDF
    AbstractA finite set {F1,…,Fn} of λ-terms is said to be discriminable if, given n arbitrary λ-terms X1,…,Xn, there exists a λ-term Δ such that: ΔFi ⩾ Xi for 1 ⩽ i ⩽ n. In the present paper each finite set of normal combinators which are pairwise non α-η-convertible is proved to be discriminable. Moreover a discrimination algorithm is given

    Toluene permeabilization differentially affects F- and P-type ATPase activities present in the plasma membrane of Streptococcus mutans

    Get PDF
    Streptococcus mutans membrane-bound P- and F-type ATPases are responsible for H+ extrusion from the cytoplasm thus keeping intracellular pH appropriate for cell metabolism. Toluene-permeabilized bacterial cells have long been used to study total membrane-bound ATPase activity, and to compare the properties of ATPase in situ with those in membrane-rich fractions. The aim of the present research was to determine if toluene permeabilization can significantly modify the activity of membrane-bound ATPase of both F-type and P-type. ATPase activity was assayed discontinuously by measuring phosphate release from ATP as substrate. Treatment of S. mutans membrane fractions with toluene reduced total ATPase activity by approximately 80% and did not allow differentiation between F- and P-type ATPase activities by use of the standard inhibitors vanadate (3 µM) and oligomycin (4 µg/mL). Transmission electron microscopy shows that, after S. mutans cells permeabilization with toluene, bacterial cell wall and plasma membrane are severely injured, causing cytoplasmic leakage. As a consequence, loss of cell viability and disruption of H+ extrusion were observed. These data suggest that treatment of S. mutans with toluene is an efficient method for cell disruption, but care should be taken in the interpretation of ATPase activity when toluene-permeabilized cells are used, because results may not reflect the real P- and F-type ATPase activities present in intact cell membranes. The mild conditions used for the preparation of membrane fractions may be more suitable to study specific ATPase activity in the presence of biological agents, since this method preserves ATPase selectivity for standard inhibitors.UNIUBECNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES
    corecore