A DISCRIMINATION ALGORITHM INSIDE $\boldsymbol{\lambda}$ - $\boldsymbol{\beta}$-CALCULUS

C. BÖHM
Istituto Matematico G. Castelnuovo, Università di Roma

M. DEZANI-CIANCAGLINI
Istituto di Scienza dell'Informazione, Universitì di Torino

P. PERETTI and S. RONCHI DELLA ROCCA
Istituto di Scienza dell' Informazione, Università di Torino

Communicated by Robin Milner
Received July 1977
Revised February 1978

Abstract

A finite set $\left\{F_{1}, \ldots, F_{n}\right\}$ of λ-terms is said to be discriminable if, given n arbitrary λ-terms X_{1}, \ldots, X_{n}, there exists a λ-term Δ such that: $$
\Delta F_{i} \geqslant X_{i} \quad \text { for } 1 \leqslant i \leqslant n
$$

In the present paper each finite set of normal combinators which are pairwise non $\alpha-\eta$-convertible is proved to be discriminable. Moreover a discrimination algorithm is given.

Introduction

The aim of the present paper is, given n distinct $\lambda-\beta$-normal combinators ${ }^{1}$ (briefly ncs) C_{1}, \ldots, C_{n} which are pairwise non $\alpha-\eta$-convertible and $n \lambda$-terms X_{1}, \ldots, X_{n}, to build a λ-term Δ such that $\Delta C_{i} \geqslant X_{i}^{2}$ for $1 \leqslant i \leqslant n$.
Obviously the construction of Δ may be reduced to that of a nc D such that: $D C_{i} \geqslant \lambda y_{1} \cdots y_{n} \cdot y_{i}(1 \leqslant i \leqslant n)$. In fact $\Delta=\lambda t . D t X_{1} \cdots X_{n}{ }^{2}$ We will say that D is a discriminator for the set $\left\{C_{1}, \ldots, C_{n}\right\}$. The similarity to an interpolation problem is clear.
We notice that D, as any nc, cannot be a total function on the set of normal forms (briefly nfs), i.e. there exist a minimum h and h ncs F_{1}, \ldots, F_{h} such that the application $D F_{1} \cdots F_{h}$ is without nf . The evaluation of h and the construction of F_{1}, \ldots, F_{h} for a specified D are given in [6].
${ }^{1}$ Combinator is used synonymously with closed λ-term, i.e., term without free variables.
${ }^{2} \geqslant$ denotes α - β-reducibility and $=$ denotes $\alpha-\beta$-convertibility.

The discrimination problem, for $n=1$, has the trivial solution $D=K I I^{3.4}$ For $n=2$ this problem has been solved in [4]. It is impossible to generalize this result in a trivial way. In fact, given three ncs C_{1}, C_{2}, C_{3} and three λ-terms X_{1}, X_{2}, X_{3}, using [4] we are able to build three λ-terms $\Delta_{12}, \Delta_{13}, \Delta_{23}$ such that:

$$
\begin{array}{lll}
\Delta_{12} C_{1}=X_{1}, & \Delta_{13} C_{1}=X_{1}, & \Delta_{23} C_{2}=X_{2} \\
\Delta_{12} C_{2}=X_{2}, & \Delta_{13} C_{3}=X_{3}, & \Delta_{23} C_{3}=X_{3}
\end{array}
$$

But we are unable to say anything about the application $\Delta_{i j} C_{k}$ when $1 \leqslant i, j, k \leqslant 3$ and $k \neq i, k \neq j$. Here we solve the problem for every finite set Φ of ncs, and we prove that the existence of a discriminator implies the existence of Kronecker's $\boldsymbol{\delta}$, i.e. a nc $\boldsymbol{\delta}_{\boldsymbol{\Phi}}$ such that:

$$
\begin{array}{ll}
\delta_{\Phi} M N=I & \text { if } M=N, \\
\delta_{\Phi} M N=K I & \text { if } M \neq N,
\end{array}
$$

where $M, N \in \Phi$.
In [2] it is proved that Kronecker's δ is not definable as a λ-term when M, N range on the whole set of ncs.

The method given here fails in the case of an infinite set of ncs. Nevertheless for each infinite set of λ-terms, which is a numerical system, a Kronecker's δ can be built by means of the recursion combinator [8, p. 220].
H. Barendregt presents in [3] a proof of the discriminability of the finite sets of ncs. His proof is based on the sketch presented by Böhm and Peretti at the Logic Colloquium 72 in Orleans.
H. B. Curry pointed out [8, p. 157], that the discriminators built in [4], for the case $n=2$, work correctly also if we allow only combinatory weak reductions. This is no longer true in the present generalization, since the proof Lemma 3 requires strong reductions, as exemplified in Remark 1. R. Hindley has proved (in a private commurication) that if discrimination is possible for $\lambda-\beta$-normal forms and λ - β reductions, then it becomes automatically possible for combinatory strong normal forms and weak reductions.

1. Key notions and definitioins

It is known that a $\mathrm{nf} N$ has the following shape:

$$
N \equiv \lambda x_{1} \cdots x_{n}, x_{j} N_{1} \cdots N_{m}^{5} \quad(m, n \geqslant 0)
$$

where $N_{i}(1 \leqslant i \leqslant m)$ are nfs.
We call x_{j} the head variable of $N, N_{i}(1 \leqslant i \leqslant m)$ the i th component of N and $\lambda x_{1} \cdots x_{n}$ the initial abstractions of N.
${ }^{3} K \equiv \lambda x y . x$.
${ }^{4} I \equiv \lambda x . x$.
${ }^{5} \equiv$ denotes α-convertibility.

We assume that, in a nf, variables bound in different abstractions have different labels. This is always feasible by α-reducing.

We call order of a variable x in a $n f$ the maximum number of components of subterms of N whose head variable is x.

If X, Y are two ncs then $X \circ Y$ denotes

$$
B X Y=\lambda z \cdot X(Y z) \quad \text { (composition of } X \text { and } Y) .
$$

X^{\prime} abbreviates $\underbrace{X \circ X \circ \cdots \circ X}_{r}$.
In what follows set of ncs will denote a finite, non-empty set of distinct ncs which are pairwise non- $\alpha-\eta$-convertible. $|\Phi|$ will denote the cardinality of the set Φ.

If X is a nc, and Φ is a set of ncs, then $X[\Phi]$ denotes the set of combinators obtained by applying X to each element of Φ. Since we will always choose X taking care that all elements of $X[\Phi]$ are reducible to ncs, we will think of $X[\Phi]$ as a set of ncs. We introduce next an equivalence relation between nes as in [4]. Our discrimination algorithm is based on this equivalence relation.

Definition 1. If $C_{1} \equiv \lambda x_{1} \cdots x_{n_{1}}, x_{j_{1}} C_{1}^{(1)} \cdots C_{m_{1}}^{(1)}, C_{2} \equiv \lambda x_{1} \cdots x_{n_{2}} \times x_{j_{2}} C_{1}^{(2)} \cdots C_{m_{2}}^{(2)}$ are nes, then C_{1} is equivalent to $C_{2}\left(C_{1} \sim C_{2}\right)$ iff:

$$
j_{1}=j_{2} \quad \text { and } \quad n_{1}-m_{1}=n_{2}-m_{2}
$$

Example 1. $C_{1} \equiv \lambda x_{1} x_{2} x_{3}, x_{1}\left(\lambda x_{4} x_{5}, x_{5}\right)\left(x_{2} x_{3}\right) \quad$ and $\quad C_{2} \equiv \lambda x_{1} x_{2}, x_{1}\left(x_{1} x_{2}\right) \quad$ are equivalent, since $j_{1}=j_{2}=1$, and $n_{1}=3, m_{1}=2, n_{2}=2, m_{2}=1$, i.e. $n_{1}-m_{1}=$ $n_{2}-m_{2}=1$.

Let us extend the notion of equivalence to a set of ncs in an obvious way.
Definition 2. A set $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ of ncs is said to be:

- an equivalent set (e.s.) iff $n>1$ and for all $1 \leqslant i, l \leqslant n: C_{i} \sim C_{l}$
- a non-equivalent set (n.e.s.) iff $n=1$ or for all $1 \leqslant i, l \leqslant n, i \neq l: C_{i} \nsucc C_{1}$.

An arbitrary set of ncs may be always split into disjoint equivalent (or nonequivalent) subsets.

Example 2.

$$
\begin{aligned}
\Phi= & \left\{\lambda x_{1} x_{2} x_{3} \cdot x_{2}\left(\lambda x_{4} x_{5}, x_{5}\right) x_{2} x_{3}, \lambda x_{1} x_{2}, x_{2}\left(\lambda x_{3} x_{4}, x_{3}\right) x_{2},\right. \\
& \left.\lambda x_{1} \lambda_{2}, x_{2}\left(\lambda x_{3} x_{4}, x_{3}\right) x_{1}\right\}
\end{aligned}
$$

is an e.s. while

$$
\begin{aligned}
\Psi= & \left\{\lambda x_{1} x_{2} x_{3}, x_{2}\left(\lambda x_{4} x_{5}, x_{5}\right) x_{3}, \lambda x_{1} x_{2}, x_{2}\left(\lambda x_{3} x_{4}, x_{3}\right) x_{2},\right. \\
& \left.\lambda x_{1} x_{2}, x_{1}\left(\lambda x_{3} x_{4}, x_{3}\right) x_{1}\right\}
\end{aligned}
$$

is a n.e.s.

The set

$$
\begin{aligned}
\Omega= & \left\{\lambda x_{1} x_{2} x_{3}, x_{2}\left(\lambda x_{4} x_{5} \cdot x_{5}\right) x_{2} x_{3}, \lambda x_{1} x_{2}, x_{2}\left(\lambda x_{3} x_{4}, x_{3}\right) x_{2},\right. \\
& \left.\lambda x_{1} x_{2}, x_{1}\left(\lambda x_{3} x_{4}, x_{3}\right) x_{1}\right\}
\end{aligned}
$$

is neither an e.s. nor a n.e.s.

We define now three properties of sets of ncs which will be used later.
Definition 3. A set $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ of ncs is varied iff for all $1 \leqslant i, l \leqslant n$

$$
C_{i} \equiv \lambda x_{1} \cdots x_{n_{i}}, x_{i} C_{1}^{(i)} \cdots C_{m_{i}}^{(i)} \nsucc C_{l} \equiv \lambda x_{1} \cdots x_{n_{i}}, x_{i i} C_{1}^{(l)} \cdots C_{m_{l}}^{(l)}
$$

implies that their head variables $x_{j_{i}}$ and $x_{i t}$ are different, i.e. $j_{i} \neq j_{1}$.
Example 3. The set $\Phi=\left\{C_{i} \mid i \leqslant 5\right\}$ where:

$$
\begin{aligned}
& C_{1} \equiv \lambda x_{1} x_{2} \cdot x_{1}\left(\lambda x_{3} x_{4} \cdot x_{3} x_{3}\right), \\
& C_{2} \equiv \lambda x_{1} x_{2} \cdot x_{1}\left(\lambda x_{3}, x_{3}\right), \\
& C_{3} \equiv \lambda x_{1} x_{2} x_{3}, x_{2}\left(\lambda x_{4} x_{5} \cdot x_{5}\right) x_{3} x_{2}, \\
& C_{4} \equiv \lambda x_{1} x_{2} \cdot x_{2}\left(\lambda x_{3} x_{4} \cdot x_{4}\right)\left(\lambda x_{3}, x_{1}\right), \\
& C_{5} \equiv \lambda x_{1} x_{2} \cdot x_{2}\left(\lambda x_{3} x_{4} \cdot x_{4}\right)\left(\lambda x_{3} \cdot x_{3} x_{3}\right)
\end{aligned}
$$

is varied since $C_{1} \sim C_{2} \nsim C_{3} \sim C_{4} \sim C_{5}$.
In contrast, the set $\Psi=\left\{G_{i} \mid i \leqslant 5\right\}$ where:

$$
\begin{aligned}
G_{1} & \equiv C_{1}, \\
G_{2} & \equiv \lambda x_{1} x_{2}, x_{1}, \\
G_{3} & \equiv \lambda x_{1} x_{2} x_{3} \cdot x_{2}\left(\lambda x_{4} x_{5}, x_{5}\right) x_{3} x_{1}, \\
G_{4} & \equiv C_{4}, \\
G_{5} & \equiv C_{5}
\end{aligned}
$$

is non-varied since $G_{1} \nsim G_{2}$ but their head variable is x_{1}.
Definition 4. A set $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ of ncs is easy iff the head variable of C_{i} occurs only once in C_{i} for $1 \leqslant i \leqslant n$.

Example 4. The set Ψ of example 3 is easy since $x_{1}\left(x_{2}\right)$ don't occur in the components of $G_{1}, G_{2}\left(G_{3}, G_{4}, G_{5}\right)$. At the contrary, the set Φ of example 3 is non-easy since x_{2} occurs twice in C_{3}.

Definition 5. A set $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ of ncs is homogeneous iff all C_{i} for $1 \leqslant i \leqslant n$ have the same number of initial abstractions.

2. Discriminators and their properties

Here is the formal definition of discriminable set of ncs.

Definition 6. A set $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ of ncs is discriminable iff there exists a nc D_{Φ} (discriminator for $\Phi)^{6}$ such that:

$$
D_{\Phi} C_{i} \geqslant \lambda y_{1} \cdots y_{n} \cdot y_{i} \stackrel{\mathrm{df}}{=} U_{n}^{(i)} \quad(1 \leqslant i \leqslant n) .
$$

Example 6. The set $\Phi=\left\{C_{i} \mid i \leqslant 3\right\}$ where:

$$
\begin{aligned}
& C_{1} \equiv \lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{1}, \\
& C_{2} \equiv \lambda x_{1} x_{2} x_{3} \cdot x_{2}\left(\lambda x_{4} x_{5} \cdot x_{4}\right)\left(\lambda x_{4} \cdot x_{4}\right), \\
& C_{3} \equiv \lambda x_{1} x_{2} x_{3} \cdot x_{3}\left(\lambda x_{4} \cdot x_{4}\right)\left(\lambda x_{4}, x_{4}\right)
\end{aligned}
$$

is discriminable. In fact the nc

$$
D \equiv \lambda t y_{1} y_{2} y_{3} \cdot t\left(\lambda y_{4} \cdot y_{1}\right)\left(\lambda y_{4} y_{5} \cdot y_{2}\right)\left(\lambda y_{4} y_{5} \cdot y_{3}\right)
$$

is such that:

$$
\begin{aligned}
& D C_{1} \geqslant \lambda y_{1} y_{2} y_{3} \cdot y_{1} \\
& D C_{2} \geqslant \lambda y_{1} y_{2} y_{3} \cdot y_{2} \\
& D C_{3} \geqslant \lambda y_{1} y_{2} y_{3} \cdot y_{3}
\end{aligned}
$$

as may be easily verified.
We notice that, if X_{1}, \ldots, X_{n} are n arbitrary λ-terms, and D_{Φ} discriminates the set $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$, then

$$
D_{\Phi} C_{i} X_{1} \cdots X_{n} \geqslant X_{i} \quad(1 \leqslant i \leqslant n)
$$

Given an arbitrary set Φ of ncs we will prove in a constructive way that it is discriminable. We build a discriminator for Φ as composition and application of ncs which we call transformers. Each transformer maps a set of ncs into another one with the same cardinality enjoying some properties peculiar to that transformer. More furmally we give the following:

Definition 7. A nc T is a transformer for a given set Φ of ncs iff $\Psi=T[\Phi]$ is a set of nes and $|\Psi|=|\Phi|$.

Clearly each discriminator is a transiormer too.

[^0]The construction of a discriminator for a given set is split into seven Lemmas and one Theorem. Lemmas 1-3 present properties implying discriminability. Lemmas 4-7 give construction rules for special transformers. Finally, the Main Theorem, using the results of the Lemmas, proves that each set Φ of ncs is discriminable.

Lemma 1. If Φ and Ψ are two sets of ncs such that:

- Φ is discriminable,
- there exists a transformer T such that $T[\Psi]=\Phi$,
then Ψ is discriminable.

Proof. A suitable discriminator for Ψ is clearly:

$$
D_{\Psi}=D_{\Phi} \circ T .
$$

Lemma 2. An homogeneous and varied n.e.s. Φ is discriminable.

Proof. Let $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ where

$$
C_{i} \equiv \lambda x_{1} \cdots x_{w}, x_{i} C_{1}^{(i)} \cdots C_{m_{i}}^{(i)}
$$

From the hypothesis on Φ it follows that $i \neq l$ implies $j_{i} \neq j$. Then, a discriminator for Φ is:

$$
D_{\Phi} \equiv \lambda t y_{1} \cdots y_{n}, t R_{1} \cdots R_{w}
$$

where

$$
R_{s} \equiv\left\{\begin{array}{ll}
\text { the } n f \text { of } K^{m_{i}} y_{i} & \text { if } \exists i\left(s=j_{i}\right) \quad(1 \leqslant i \leqslant n) \\
\text { an arbitrary nc } & \text { otherwise }
\end{array} \quad(1 \leqslant s \leqslant w)\right.
$$

Lemma 3. If Φ is an homogenenus and varied set and each equinalence class of Φ is discriminable, then Φ is discriminable.

Proof. Let $\Phi=\bigcup_{l=1}^{q} \Phi_{l}$ where

$$
\Phi_{l}=\left\{C_{i}^{(l)} \mid i \leqslant n_{l}\right\} \quad\left(n_{l} \geqslant 1,1 \leqslant l \leqslant q\right)
$$

are the equivalence classes of Φ.
If $C_{i}^{(l)} \equiv \lambda x_{1} \cdots x_{w}, x_{j} C_{1}^{(l, i)} \cdots C_{m_{l}}^{(l, i)}$ are the ncs belonging to Φ_{l}, we define:

$$
\begin{aligned}
& v_{l}=n_{1}+\cdots+n_{l-1} \quad(1 \leqslant l \leqslant q), \\
& n=v_{q+1}=n_{1}+\cdots+n_{q} .
\end{aligned}
$$

By hypothesis $\Phi_{l}(1 \leqslant l \leqslant q)$ is discriminable, i.e., there exists a discriminator $\boldsymbol{D}_{\boldsymbol{\Phi}_{l}}$ such that:

$$
D_{\Phi_{l}}\left[\Phi_{l}\right]=\left\{U_{n_{l}}^{(i)} \mid i \leqslant n_{l}\right\} .
$$

Then a discriminator for Φ is:

$$
D_{\Phi} \equiv \lambda t . t R_{1} \cdots R_{w}
$$

where:

$$
R_{s} \equiv\left\{\begin{array}{l}
\text { the nf of } K_{K}^{m_{l}+v_{l}}\left(\lambda z_{1} \cdots z_{n_{l}} \cdot K^{n-v_{l+1}}\left(D_{\Phi_{l} t} t z_{1} \cdots z_{n_{l}}\right)\right) \\
\text { if } \exists l\left[s=j_{l}\right] \quad(1 \leqslant l \leqslant q), \\
\text { an arbitrery nc otherwise }
\end{array} \quad(1 \leqslant s \leqslant w) .\right.
$$

In fact:

$$
\begin{aligned}
D_{\Phi} C_{i}^{(l)} & =\left(\lambda t, t R_{1} \cdots R_{w}\right) C_{i}^{(l)} \geqslant C_{i}^{(l)} \bar{R}_{1} \cdots \bar{R}_{w} \\
& =\left(\lambda x_{1} \cdots x_{w} \cdot x_{i l} C_{1}^{(l, i)} \cdots C_{m_{l}}^{(1, i)}\right) \bar{R}_{1} \cdots \bar{R}_{w} \geqslant \bar{R}_{i l} \bar{C}_{1}^{(l, i)} \cdots \bar{C}_{m_{l}}^{(l, i)}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \bar{R}_{s} \equiv\left\{\begin{array}{c}
\text { the nf of } K^{m_{l}+v_{l}}\left(\lambda z_{1} \cdots z_{n_{l}} \cdot K^{n-v_{l+1}}\left(D_{\Phi_{l}} C_{1}^{(l)} z_{1} \cdots z_{n_{l}}\right)\right) \\
\text { if } \exists l\left[s=j_{l}\right] \quad(1 \leqslant l \leqslant q), \\
R_{s} \text { otherwise }
\end{array} \quad(1 \leqslant s \leqslant w) .\right. \\
& \bar{C}_{t}^{(l i)}=C_{t}^{(l, i)}\left[x_{s} / \bar{R}_{s}\right] \quad\left(1 \leqslant t \leqslant m_{l}, 1 \leqslant s \leqslant w\right) .
\end{aligned}
$$

Since by hypothesis $D_{\Phi_{l}}$ is a discriminator for Φ_{l}, we have:

$$
\begin{aligned}
D_{\Phi} C_{i}^{(l)} & \geqslant K^{m_{l}+v_{l}}\left(\lambda z_{1} \cdots z_{n_{l}} \cdot K^{n-v_{l+1}}\left(U_{n_{l}}^{(i)} z_{1} \cdots z_{n_{l}}\right)\right) \bar{C}_{1}^{(l, i)} \cdots \bar{C}_{m_{l}}^{(l i)} \\
& \geqslant K^{v_{l}}\left(\lambda z_{1} \cdots z_{n_{l}} \cdot K_{\left.K^{n-v_{l+1}} z_{i}\right) \geqslant K^{v_{l}} U_{n-v_{l}}^{(i)} \geqslant U_{n}^{\left(i+v_{l}\right)} .} .\right.
\end{aligned}
$$

Remark 1. We notice that the proof of this lemma is no longer true inside weak combinatory logic. For example
let $\Phi=\bigcup_{i=1}^{2} \Phi_{1,}$ where: $\Phi_{1}=\left\{C_{1}, C_{2}\right\}, \Phi_{2}=\left\{C_{3}, C_{4}\right\}$ and:

$$
\begin{aligned}
& C_{1} \equiv \lambda x_{1} x_{2}, x_{1}\left(\lambda x_{3}, x_{3}\right), \\
& C_{2} \equiv \lambda x_{1} x_{2}, x_{1}\left(\lambda x_{3} x_{4} \cdot x_{4}\right), \\
& C_{3} \equiv \lambda x_{1} x_{2}, x_{2}\left(\lambda x_{3} \cdot \ddot{x}_{3}\right), \\
& C_{4} \equiv \lambda x_{1} x_{2} \cdot x_{2}\left(\lambda x_{3} x_{4} \cdot x_{1}\right) .
\end{aligned}
$$

If the symbols have the same meaning as in the proof of Lemma 3, we have that:

$$
\begin{array}{llll}
q=2, & v_{1}=0, & v_{3}=n=4, & n_{1}=n_{2}=2 \\
w=2, & v_{2}=2, & m_{1}=m_{2}=1, & j_{1}=1, \\
j_{2}=2
\end{array}
$$

Φ_{1} and Φ_{2} are discriminable, since their discriminators are respectively:

$$
\begin{aligned}
& D_{\Phi_{1}} \equiv \lambda\left(y_{1} y_{2} \cdot t\left(\lambda y_{3} \cdot y_{3}\left(\lambda y_{4} \cdot y_{1}\right) y_{2}\right) Z_{1},\right. \\
& D_{\Phi_{2}} \equiv \lambda t y_{1} y_{2} \cdot t\left(\lambda y_{3} \cdot y_{2}\right)\left(\lambda y_{3} \cdot y_{3}\left(\lambda y_{4} y_{5} \cdot y_{1}\right) Z_{2} y_{3}\right)
\end{aligned}
$$

where Z_{1}, Z_{2} are arbitrary ncs.
Then we have that a discriminator for Φ is the nf of:

$$
\lambda t \cdot t\left(K\left(\lambda y_{1} y_{2} \cdot K^{2}\left(D_{\Phi_{1}} t y_{1} y_{2}\right)\right)\right)\left(K^{3}\left(\lambda y_{1} y_{2} \cdot D_{\Phi_{2}} t y_{1} y_{2}\right)\right)
$$

i.e.:

$$
\begin{aligned}
& D_{\Phi} \equiv \lambda t \cdot t\left(\lambda y_{1} y_{2} y_{3} y_{4} y_{5} \cdot t\left(\lambda y_{6} \cdot y_{6}\left(\lambda y_{7} \cdot y_{2}\right) y_{3}\right) Z_{1}\right) \\
& \quad\left(\lambda y_{1} y_{2} y_{3} y_{4} y_{5} \cdot t\left(\lambda y_{6} \cdot y_{5}\right)\left(\lambda y_{6} \cdot y_{6}\left(\lambda y_{7} y_{8} \cdot y_{4}\right) Z_{2} y_{6}\right)\right) .
\end{aligned}
$$

It may be easily verified that $D_{\Phi} C_{i}$ does not weak reduce to $\boldsymbol{U}_{i}^{(4)}$ for $1 \leqslant i \leqslant 4$.
Remark 2. We notice that this lemma permits us to build a discriminator for an homogeneous and varied set Φ by applying a suitable nc P_{Φ} to discriminators $D_{\Phi_{1}}, \ldots, D_{\Phi_{q}}$ for the equivalence classes of Φ. In fact if $w, n, v_{l}, n_{l}, m_{l}, j_{l}(1 \leqslant l \leqslant q)$ are defined as in the proof of Lemma 3, it is sufficient to choose:

$$
P_{\Phi} \equiv \lambda d_{1} \cdots d_{q} t . t P_{1} \cdots P_{w}
$$

where

$$
P_{s} \equiv\left\{\begin{array}{ll}
\text { the nf of } K^{m_{1}+v_{1}}\left(\lambda z_{1} \cdots z_{n_{1}} \cdot K^{n-v_{1+1}}\left(d_{1} t z_{1} \cdots z_{n}\right)\right) \\
& \text { if } \exists l\left[s=j_{l}\right] \quad(1 \leqslant l \leqslant q),
\end{array} \quad(1 \leqslant s \leqslant w),\right.
$$

to obtain

$$
D_{\Phi}=P_{\Phi} D_{\Phi_{1}} \cdots D_{\Phi_{q}}
$$

Lemma 4. If Φ is a set of ncs, then there exists a transformer H_{Φ} such that $H_{\Phi}[\boldsymbol{x}]$ is an homogeneous set of ncs.

Proof. Let $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ and $C_{i} \equiv \lambda x_{1} \cdots x_{w_{i}}, x_{i} C_{i}^{(i)} \cdots C_{m_{i}}^{(i)}$
If $w=\max _{1 \leqslant i \leqslant n}\left(w_{i}\right)$, a suitable transformer for Φ is:

$$
H_{\Phi} \equiv \lambda t y_{1} \cdots y_{w}, t y_{1} \cdots y_{w}
$$

We observe that $H_{\Phi}={ }_{\eta} I^{7}$ for each set Φ. The obtained set $H_{\Phi}[\Phi]$ is then a set of n ncs each one having w initial abstrastions.

In the particular case $w_{i}=w(1 \leqslant i \leqslant n), H_{\Phi}[\Phi]=\Phi$.

[^1]Lemma 5. If Φ is an homogeneous set of ncs, then there exists a transformer V_{Φ} such that $V_{\Phi}[\Phi]$ is an homogeneous, varied and easy set of ncs.

Proof. The desired transformer will be constructed by using the ncs $\pi_{[r]}=$ $\lambda z_{1} \cdots z_{r+1} \cdot z_{r+1} z_{1} \cdots z_{r}$ [7, p. 171] in the same way as in [4], [8, p. 160], and [5].

For sufficiently large values of r the combinators $\pi_{[r]}$ bring into head position variables such that:

- non-equivalent ncs have different head variables (condition on varied sets)
- the head variable of a nc occurs only once in this nc (condition on easy sets).

Let $\Phi=\left\{C_{i} \mid i \leqslant n\right\}, C_{i} \equiv \lambda x_{1} \cdots x_{w} \cdot \bar{C}_{i}(1 \leqslant i \leqslant n)$ and $\Theta=\left\{x_{i_{1}}, \ldots, x_{j_{p}}\right\}(p>0)$ be the set of head variables of all the $C_{i}(1 \leqslant i \leqslant n)$. For $l=1, \ldots, p$ we build a transformer V_{l} such that the desired V_{Φ} is the composition of these transformers and more precisely:

$$
V_{\Phi}=V_{p} \circ V_{p-1} \circ \cdots \circ V_{1} .
$$

Construction of V_{l}. Let $\Phi^{(0)}=\Phi$ and $\Phi^{(r)}=V_{r} \Phi^{(r-1)}(1 \leqslant r \leqslant l-1)$. Then we may choose:

$$
V_{l} \equiv \lambda t y_{1} \cdots y_{a_{l}+w_{l}+1}, t y_{1} \cdots y_{i-1} \pi_{\left[a_{l}\right]} y_{i_{l}+1} \cdots y_{a_{l}+w_{l}+1}
$$

where:

- w_{l} is the number of initial abstractions of the ncs of $\Phi^{(l-1)}$ (w_{l} is defined unambiguously, since $\Phi^{(l-1)}$ will be proved to be homogeneous).
$-a_{1}$ is one plus the rnaximum of the orders of variables in the ncs of $\Phi^{(l-1)}$.
We notice that $j_{l} \leqslant w_{l}$ since by construction $w_{l} \geqslant w$.
If $G_{i} \equiv \lambda y_{1} \cdots y_{w_{1}} \cdot \zeta_{i} G_{1}^{(i)} \cdots G_{m_{i}}^{(i) 8}$ belongs to $\Phi^{(1-1)}$ since $m_{i} \leqslant a_{l}$, we obtain:

$$
V_{l} G_{i} \geqslant\left\{\begin{array}{c}
\lambda y_{1} \cdots y_{a_{l}+w_{l}+1} \cdot y_{a_{l}+w_{l}-m_{i}+1} \bar{G}_{1}^{(i)} \cdots \bar{G}_{m_{i}}^{(i)} y_{w_{l}+1} \cdots \\
\cdots y_{a_{l}+w_{l}-m_{1}} y_{a_{l}+w_{l}-m_{i}+2} \cdots y_{a_{l}+w_{l}+1} \quad \text { if } \zeta_{i}=y_{i l} \\
\lambda y_{1} \cdots y_{a_{l}+w_{l}+1} \cdot \zeta_{i} \bar{G}_{1}^{(i)} \cdots \bar{G}_{m_{i}}^{(i)} y_{w_{l}+1} \cdots y_{a_{l}+w_{l}+1} \quad \text { otherwise }
\end{array}\right.
$$

where $\bar{G}_{i}^{(i)}=G_{i}^{(i)}\left[y_{i l} / \pi_{\left[a_{i}\right]}\right]\left(1 \leqslant t \leqslant m_{i}\right)$.
Let's observe that the number of components of $V_{l} G_{i}$ exceeds that of G_{i} by either $a_{1}+1$ or a_{l}, according as either $\zeta_{i} \neq y_{i_{1}}$ or $\zeta_{i}=y_{i r}$. Then, if $C_{i} \in \Phi$ has head variable $x_{i r}(1 \leqslant r \leqslant p)$ and m components, $\left(V_{l} \circ V_{l-1} \circ \cdots \circ V_{1}\right) C_{i}$ has $m+s_{l}$ components if $r>l, m+s_{l}-1$ components otherwise, where $s_{l}=\sum_{u=1}^{l}\left(a_{u}+1\right)$.

It is easy to verify that:
(i) $V_{1} \Phi^{(1-1)}$ is an homogeneous set, if $\Phi^{(1-1)}$ is homogeneous.
(ii) if $C_{i} \in \Phi$ has head variable $x_{i r}(1 \leqslant r \leqslant p)$ and m components, then the head variable of $\left(V_{1} \circ \cdots \circ V_{1}\right) C_{i}$ is $y_{a_{r}+w_{r}-m-s_{r-1}+1}$ if $r \leqslant l$, and is $y_{i r}$ otherwise.
(iii) each variable $y_{u}\left(u \geqslant w_{l}+1\right)$ occurs only once in $\left(V_{l} \circ \cdots \circ V_{1}\right) C_{i}$.

In the Appendix, V_{Φ} is proved to be a transformer for Φ. Now we must prove that $V_{\Phi}[\Phi]$ is an homogeneous, varied and easy set.
${ }^{8} \zeta_{i}$ represents a variable bound in the initial abstractions of \boldsymbol{G}_{i}.

Since Φ is homogeneous, from observation (i) it follows that $V_{\Phi}[\Phi]$ is homogeneous too.

To prove that $V_{\Phi}[\Phi]$ is a varied set, let us observe that, if j_{r} and m are defined as before, any nc of $V_{\Phi}[\Phi]$ with $y_{a_{r}+w_{r}-m-s_{r-1}+1}$ as head variable has $m+s_{p}-1$ components, as required by the varied condition.

Moreover from observation (iii) it follows that $V_{\Phi}[\Phi]$ is an easy set.

Example 6. Let $\boldsymbol{\Phi}=\left\{C_{i} \mid i \leqslant 4\right\}$ where

$$
\begin{array}{ll}
C_{1} \equiv \lambda x_{1} x_{2} \cdot x_{2}\left(\lambda x_{3} x_{4} \cdot x_{4} x_{3}\right), & C_{2} \equiv \lambda x_{1} x_{2}, x_{2}\left(\lambda x_{3}, x_{3}\right), \\
C_{3} \equiv \lambda x_{1} x_{2} \cdot x_{2}\left(\lambda x_{3} x_{4} \cdot x_{3} x_{2}\right), & C_{4} \equiv \lambda x_{1} x_{2}, x_{2}\left(\lambda x_{3} x_{4}, x_{3}\right) x_{1} .
\end{array}
$$

Φ is a non-varied and non-easy set, since x_{2} is the head variable of non-equivalent ncs and it occurs twice in C_{3}.

If the symbols have the same meaning as in the proof of Lemma 5, we have that:

$$
\Theta=\left\{x_{2}\right\}, a_{1}=3, w_{1}=2
$$

Then

$$
V_{\Phi} \equiv V_{1} \equiv \lambda t y_{1} \cdots y_{6} \cdot t y_{1} \pi_{[3]} y_{3} \cdots y_{6}
$$

It may be easily verified that:

$$
\begin{aligned}
& V_{\Phi} C_{1} \geqslant \lambda x_{1} \cdots x_{6}, x_{5}\left(\lambda x_{7} x_{8}, x_{8} x_{7}\right) x_{3} x_{4} x_{6} \\
& V_{\Phi} C_{2} \geqslant \lambda x_{1} \cdots x_{6}, x_{5}\left(\lambda x_{7}, x_{7}\right) x_{3} x_{4} x_{6} \\
& V_{\Phi} C_{3} \geqslant \lambda x_{1} \cdots x_{6}, x_{5}\left(\lambda x_{7} x_{8}, x_{7} \pi_{[3]}\right) x_{3} x_{4} x_{6} \\
& V_{\Phi} C_{4} \geqslant \lambda x_{1} \cdots x_{6}, x_{4}\left(\lambda x_{7} x_{8}, x_{7}\right) x_{1} x_{3} x_{5} x_{6} .
\end{aligned}
$$

In order to prove that our discrimination algorithm terminates, a measure $d[\Phi]$ is defined. $d[\Phi]=l$ means intuitively that there exist at least two ncs of Φ having different subterms at nesting level l of parenthesis, but this is not true for all levels less than l.

More formally we have the following:
Definition 8. If $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ is a set of ncs, the depth of Φ is $d[\Phi]$ so defined:

- if $n=1$, then $d[\Phi]=\infty$;
- if there exist h, k such that $1 \leqslant h, k \leqslant n$ and $C_{h} \nsim C_{k}$, then $d[\Phi]=0$;
- otherwise let $H_{\Phi}[\Phi]=\left\{G_{i} \mid i \leqslant n\right\}, G_{i} \equiv \lambda x_{1} \cdots x_{w}, x_{i} G_{1}^{(i)} \cdots G_{m}^{(i)}$ and

$$
\Phi_{p}=\left\{\lambda x_{1} \cdots x_{w} \cdot G_{p}^{(i)} \mid i \leqslant n\right\} \quad \text { for } 1 \leqslant p \leqslant m .
$$

Then $d[\Phi]=1+\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{p}\right]\right]$.

Example 7. Let $\Phi=\left\{C_{i} \mid i \leqslant 2\right\}$, where:

$$
\begin{aligned}
& C_{1} \equiv \lambda x_{1} x_{2}, x_{1}\left(\lambda x_{3} x_{4}, x_{3} x_{3}\right), \\
& C_{2} \equiv \lambda x_{1} x_{2}, x_{1}\left(\lambda x_{3} \cdot x_{3}\right) .
\end{aligned}
$$

$d[\Phi]$ is different from 0 since $C_{1} \sim C_{2} . H_{\Phi}[\Phi] \equiv \Phi$ since Φ is an homogeneous set. Then $d[\Phi]=1+d\left[\Phi_{1}\right]$, where $\Phi_{1}=\left\{G_{1}, G_{2}\right\}$ and:

$$
\begin{aligned}
& G_{1} \equiv \lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{3} x_{3} \\
& G_{2} \equiv \lambda x_{1} x_{2} x_{3} \cdot x_{3} .
\end{aligned}
$$

Since $G_{1} \sim G_{2}$, and Φ_{1} is non-homogeneous, we must compute $H_{\Phi_{1}}$.

$$
H_{\Phi_{1}} \equiv \lambda t y_{1} y_{2} y_{3} y_{4} \cdot t y_{1} y_{2} y_{3} y_{4}
$$

and

$$
H_{\Phi_{1}}\left[\Phi_{1}\right]=\left\{G_{1}^{\prime}, G_{2}^{\prime}\right\}
$$

where:

$$
\begin{aligned}
& G_{1}^{\prime} \equiv \lambda x_{1} x_{2} x_{3} x_{4}, x_{3} x_{3}, \\
& G_{2}^{\prime} \equiv \lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{3} x_{4} .
\end{aligned}
$$

Then $d\left[\Phi_{1}\right]=1+d\left[\Phi_{2}\right]$, where $\Phi_{2}=\left\{F_{1}, F_{2}\right\}$ and:

$$
\begin{aligned}
& F_{1} \equiv \lambda x_{1} x_{2} x_{3}, x_{3}, \\
& F_{2} \equiv \lambda x_{1} x_{2} x_{3} x_{4}, x_{4} .
\end{aligned}
$$

$d\left[\Phi_{2}\right]=0$ since $F_{1} \not+F_{2}$. Therefore $d\left[\Phi_{1}\right]=1$ and $d[\Phi]=2$.
We say that a transformer T is inoffensive for a set Φ when it preserves the depth of Φ, i.e., $d[\Phi]=d[T[\Phi]]$.

Since H_{Φ} preserves the equivalence relation between ncs belonging to Φ, then from definition 8 it follows immediately that H_{Φ} is inoffensive for Φ.

We need to prove that also V_{Φ} is inoffensive for Φ. This is intuitively true if we take into account the structure of $\boldsymbol{V}_{\boldsymbol{\Phi}}$. The Appendix contains a formal proof of this fact.

Lemma 6. If $\boldsymbol{\Phi}$ is an homogeneous and easy e.s., then there exists a transformer L_{Φ} such that $\Psi=L_{\Phi}[\Phi]$ is an homogeneous set and $d[\Psi]=d[\Phi]-1$.

Proof. Let $\Phi=\left\{C_{i} \mid i \leqslant n\right\}, C_{i} \equiv \lambda x_{1} \cdots x_{w}, x_{j} C_{1}^{(i)} \cdots C_{m}^{(i)}$ and $\Phi_{p}=\left\{\lambda x_{1} \cdots x_{w}\right.$. $\left.C_{p}^{(i)} \mid i \leqslant n\right\}$ for $1 \leqslant p \leqslant m$. By Definition 8: $d[\Phi]=1+\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{p}\right]\right]$. Let q be the minimum integer such that $d\left[\Phi_{q}\right]=\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{p}\right]\right]$. If

$$
C_{q}^{(i)} \equiv \lambda x_{w+1} \cdots x_{w+v_{i}} \cdot x_{i_{i}} G_{1}^{(i)} \cdots G_{i_{i}}^{(i)} \quad \text { and } v=\max _{1 \leqslant i \leqslant n} v_{i}
$$

then a suitable transformer for Φ is:

$$
\begin{aligned}
L_{\Phi} \equiv & \lambda t y_{1} \cdots y_{w+v} \cdot t y_{1} \cdots y_{i-1}\left(\lambda z_{1} \cdots z_{q} \cdot z_{q} y_{w+1} \cdots y_{w+v} z_{1} \cdots z_{q}\right) \\
& y_{j+1} \cdots y_{w}
\end{aligned}
$$

In fact we have that:

$$
\begin{aligned}
L_{\Phi} C_{i} & \geqslant \lambda x_{1} \cdots x_{w+v} \cdot C_{q}^{(i)} x_{w+1} \cdots x_{w+v} C_{1}^{(i)} \cdots C_{m}^{(i)} \\
& \geqslant \lambda x_{1} \cdots x_{w+v} \cdot x_{i i} G_{1}^{(i)} \cdots G_{i}^{(i)} x_{w+v_{i}+1} \cdots x_{w+v} C_{1}^{(i)} \cdots C_{m}^{(i)} \stackrel{\text { Df }}{=} C_{i}^{\prime}
\end{aligned}
$$

Clearly C_{i}^{\prime} is a nc $(1 \leqslant i \leqslant n), C_{h}^{\prime} \neq{ }_{\eta} C_{k}^{\prime}$ for $h \neq k(1 \leqslant h, k \leqslant n)$ and moreover $\dot{\psi}=\left\{C_{i}^{\prime} \mid i \leqslant n\right\}$ is an homogeneous set.

We must prove that $d[\Psi]=d[\Phi]-1$. We split this proof according to $d[\Phi]=1$ or $d[\Phi]>1$.
$d[\Phi]=1$ means $d\left[\Phi_{q}\right]=0$, i.e. there exist h, k such that

$$
\lambda x_{1} \cdots x_{w} \cdot C_{q}^{(h)} \not \subset \lambda x_{1} \cdots x_{w} \cdot C_{q}^{(k)}
$$

i.e., $w+v_{h}-t_{h} \neq w+v_{k}-t_{k}$ or $x_{j_{h}} \neq x_{j_{k}}$.

In this case we prove that $C_{h}^{\prime} \not \subset C_{k}^{\prime}$, i.e. $d[\Psi]=0 . C_{h}^{\prime}, C_{k}^{\prime}$ have both $w+v$ initial abstractions, respectively $t_{h}+v-v_{h}+m, t_{k}+v-v_{k}+m$ components and their head variables are respectively $x_{i_{h}}, x_{i_{k}}$. Then $t_{h}-v_{h} \neq t_{k}-v_{k}$ or $x_{i_{h}} \neq x_{i_{k}}$ implies $C_{h}^{\prime} \neq C_{k}^{\prime}$.
$d[\Phi]=u+2$ with $u \geqslant 0$ means

$$
\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{p}\right]\right]=d\left[\Phi_{q}\right]=u+1
$$

Φ_{q} is in general a non-homogencous set. By Definition 8 we must consider the set $\bar{\Phi}_{q}=H_{\Phi_{q}}\left[\Phi_{q}\right]$. By Lemma $4, H_{\Phi_{q}} \equiv \lambda t y_{1} \cdots y_{w+v} \cdot t y_{1} \cdots y_{w+v}$ and therefore $\bar{\Phi}_{q}=\left\{G_{i} \mid i \leqslant n\right\}$, where $\quad G_{i} \equiv \lambda x_{1} \cdots x_{w+v}, x_{i j} G_{1}^{(i)} \cdots G_{i}^{(i)} x_{w+v_{i}+1} \cdots x_{w+v} \stackrel{\text { Dr }}{=}$ $\lambda x_{1} \cdots x_{w+v}, x_{i} G_{1}^{(i)} \cdots G_{v+r}^{(i)}$ and $r=t_{i}-v_{i}$ for $1 \leqslant i \leqslant n$. If we define

$$
\Psi_{p}^{*}=\left\{\lambda x_{1} \cdots x_{w+v} . G_{p}^{(i)} \mid i \leqslant n\right\} \quad \text { for } 1 \leqslant p \leqslant v+r,
$$

then

$$
d\left[\Phi_{q}\right]=d\left[\bar{\Phi}_{q}\right]=1+\min _{1 \leqslant p \leqslant v+r}\left[d\left[\Psi_{p}^{*}\right]\right],
$$

i.e., $\min _{1 \leqslant p \leqslant v+r}\left[d\left[\Psi_{p}^{*}\right]\right]=u$.

By Definition $8, d[\Psi]=1+\min _{1 \leqslant p \leqslant v+r+m}\left[d\left[\Psi_{p}\right]\right]$ where the sets Ψ_{p} are so defined:

$$
\begin{aligned}
& -\Psi_{p}=\Psi_{p}^{*} \text { for } 1 \leqslant p \leqslant r+v, \\
& -\Psi_{r+v+p}=\Phi_{p} \text { for } 1 \leqslant p \leqslant m .
\end{aligned}
$$

Then since $\min _{1 \leqslant p \leqslant r+v}\left[d\left[\Psi_{p}^{*}\right]\right]=u$ and $\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{F}\right]\right]=u+1$, we have that $d[\Psi]=u+1$

Example 8. Let Φ be the same as in example 7. Φ is an homogeneous and easy e.s., and $d[\Phi]=2$. If the symbols have the same rneaning as in the proof of Lemma 6 , we have:

$$
w=2, \quad v=2, \quad j=1, \quad q=1
$$

Then the transformer L_{Φ} is:

$$
L_{\Phi} \equiv \lambda t y_{1} y_{2} y_{3} y_{4} \cdot t\left(\lambda y_{5} \cdot y_{5} y_{3} y_{4} y_{5}\right) y_{2}
$$

It may be easily verified that $L_{\Phi}[\Phi]=\Psi=\left\{G_{1}, G_{2}\right\}$, where:

$$
\begin{aligned}
& G_{1} \equiv \lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{3} x_{3}\left(\lambda x_{5} x_{6} \cdot x_{5} x_{5}\right), \\
& G_{2} \equiv \lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{3} x_{4}\left(\lambda x_{5}, x_{5}\right)
\end{aligned}
$$

Clearly Ψ is an homogeneous set and $d[\Psi]=1$.
Remark 3. The condition that Φ is an easy set is neeaid to prevent the creation of λ-terms not possessing nf in the application of $L_{\boldsymbol{\phi}}$. The following example may clarify this. Let $\Phi=\left\{C_{1}, C_{2}\right\}$ where:

$$
C_{1} \equiv \lambda x_{1} x_{2}, x_{1} x_{1}, \quad C_{2} \equiv \lambda x_{1} x_{2}, x_{1} x_{2}
$$

Φ is an homogenerous e.s. which is non-easy since x_{1} occurs twice in C_{1}.
By a (wrong) application of Lemma 6 we would obtain:

$$
L_{\Phi} \equiv \lambda t y_{1} y_{2} \cdot t\left(\lambda y_{3} \cdot y_{3} y_{3}\right) y_{2} .
$$

It may be easily verified that:

$$
L_{\Phi} C_{1} \geqslant \lambda x_{1} \cdot\left(\lambda x_{2}, x_{2} x_{2}\right)\left(\lambda x_{2}, x_{2} x_{2}\right),
$$

i.e. Ψ contains one combinator not possessing nf!

Lemma 7. If Φ is an homogeneous and easy set of ncs, then there exists a transformer \boldsymbol{N}_{Φ} such that $\boldsymbol{N}_{\Phi}[\Phi]$ contains at least two non-equivalent ncs.

Proof. We make this proof by induction on $d[\Phi]$.
First step. $d[\Phi]=0$ implies by definition that there are $C_{h}, C_{k} \in \Phi$ such that $C_{h} \nsucc C_{k}$. Therefore Φ itself satisfies the desired condition.
Inductive step. Let this Lemma be true for $d[\Phi]=l$, we prove it for $d[\Phi]=l+1$. If $d[\Phi]=l+1$, by Lemma 6 there exists a transformer L_{Φ} such that $\Psi=L_{\Phi}[\Phi]$ and $d[\Psi]=l$. Moreover Ψ is an homogeneous set. If Ψ is an easy set, then N_{Ψ} exists by inductive hypothesis and $N_{\Phi}=N_{\Psi} \circ L_{\Phi}$. Otherwise we must consider $\Sigma=V_{\Psi}[\Psi]$. $d[\Sigma]=l$ since V_{Ψ} is inoffensive for $\Psi . N_{\Sigma}$ exists by inductive hypothesis and then we
have: $N_{\Phi}=N_{\Sigma} \circ V_{\Psi} \circ L_{\Phi}$. Lastly we remark that N_{Φ} as composition of transformers is again a transformer for Φ.

Example 9. Let Φ be the same as in Example 7. As shown in Example 8, $d[\Phi]=2$ and the transformer L_{Φ} is:

$$
L_{\Phi} \equiv \lambda t y_{1} y_{2} y_{3} y_{4} \cdot t\left(\lambda y_{5}, y_{5} y_{3} y_{4} y_{5}\right) y_{2}
$$

The obtained set is $\Psi=\left\{G_{1}, G_{2}\right\}$, where

$$
\begin{aligned}
& G_{1} \equiv \lambda x_{1} x_{2} x_{3} x_{4}, x_{3} x_{3}\left(\lambda x_{5} x_{6}, x_{5} x_{5}\right) \\
& G_{2} \equiv \lambda x_{1} x_{2} x_{3} x_{4}, x_{3} x_{4}\left(\lambda x_{5}, x_{5}\right)
\end{aligned}
$$

and $d[\Psi]=1$. We notice that Ψ is a non-easy set. The transformer V_{Ψ} is:

$$
V_{\Psi}=V_{1}=\lambda t y_{1} \cdots y_{8}, t y_{1} y_{2} \pi_{[3]} y_{4} \cdots y_{8}
$$

and the obtained set is $\Sigma=\left\{F_{1}, F_{2}\right\}$, where:

$$
\begin{aligned}
& F_{1} \equiv \lambda x_{1} \cdots x_{8} \cdot x_{6} \pi_{[3]}\left(\lambda x_{9} x_{10} \cdot x_{9} x_{9}\right) x_{5} x_{7} x_{8} \\
& F_{2} \equiv \lambda x_{1} \cdots x_{8} \cdot x_{6} x_{4}\left(\lambda x_{9} \cdot x_{9}\right) x_{5} x_{7} x_{8}
\end{aligned}
$$

and $d[\Sigma]=1$. Now we must compute $N_{\Sigma} \equiv L_{\Sigma}$ since here $d[\Sigma]=1$.

$$
L_{\Sigma} \equiv \lambda t y_{1} \cdots y_{12} \cdot t y_{1} \cdots y_{5}\left(\lambda y_{13} \cdot y_{13} y_{9} \cdots y_{13}\right) y_{7} y_{8}
$$

and the obtained set is $\Omega=\left\{E_{1}, E_{2}\right\}$, where:

$$
\begin{aligned}
& E_{1} \equiv \lambda x_{1} \cdots x_{12} \cdot x_{12} x_{9} x_{10} x_{11} \pi_{[3]}\left(\lambda x_{13} x_{14}, x_{13} x_{13}\right) x_{5} x_{7} x_{8} \\
& E_{2} \equiv \lambda x_{1} \cdots x_{12}, x_{4} x_{9} x_{10} x_{11} x_{12} x_{4}\left(\lambda x_{13}, x_{13}\right) x_{5} x_{7} x_{8}
\end{aligned}
$$

and $d[\Omega]=0$, because $E_{1} \nsim E_{2}$.
Then the desired transformer N_{Φ} is the nf of: $L_{\Sigma} \circ V_{\Psi} \circ L_{\Phi}$, i.e.:

$$
\begin{array}{r}
N_{\Phi} \equiv \lambda t y_{1} \cdots y_{12} \cdot t\left(\lambda y_{13} \cdot y_{13} \pi_{[3]} y_{4} y_{13}\right) y_{2} y_{5} \\
\left(\lambda y_{13} \cdot y_{13} y_{9} \cdots y_{13}\right) y_{7} y_{8} .
\end{array}
$$

Main Theorem. Any set of ncs is discriminable.
Proof. Let Φ be the current set and $|\Phi|=n$. We give a constructive proof, i.e., a method to build a nc D_{ϕ} such that $D_{\Phi}[\Phi]=\left\{U_{i}^{(n)} \mid i \leqslant n\right\}$.

This construction is based on the possibility of composition which is assured by Lemma 1.
As first step we build $\Psi=H_{\Phi}[\Phi]$. Now the problem is to discriminate Ψ. If Ψ is a non-varied set we build $\Sigma=V_{\Psi}[\Psi]$. Otherwise we assume $\Sigma=\Psi$.

If Σ is a n.e.s. it is discriminable by Lemma 2.

If $d[\Sigma]=0$ we assume $\chi=\Sigma$. If Σ is an easy e.s. we build $\chi=N_{\Sigma}[\Sigma]$. Lastly, if Σ is a non-easy e.s. we build first $\Omega=V_{\Sigma}[\Sigma]$ and then $\chi=N_{\Omega}[\Omega]$. In all cases we have $d[\chi]=0$.

If χ is a varied set, then we assume $\Gamma=\lambda_{0}$. Otherwise we build $\Gamma=V_{x}(\chi)$.
Now the problem is to discriminate Γ. Γ is a varied set which is the union of (at least 2) equivalence classes $\Gamma_{1}, \ldots, \Gamma_{q}$. Lemma 3 assures us that if $D_{\Gamma_{1}}$ is a discriminator for Γ_{l} for $1 \leqslant l \leqslant q$, then a discriminator for Γ is $P_{\Gamma} D_{\Gamma_{1}} \cdots D_{\Gamma_{a}}$. Hence the problem is to discriminate $\Gamma_{1}, \ldots \Gamma_{q}$. Since the cardinality of Γ_{l} is less then r . for $1 \leqslant l \leqslant q$ this procedure recursively applied to each Γ_{l} terminates.

Example 10. Let $\Phi=\left\{C_{i} \mid i \leqslant 4\right\}$, where:

$$
\begin{aligned}
& C_{1} \equiv \lambda x_{1} x_{2}, x_{1}\left(\lambda x_{3} x_{4}, x_{3} x_{3}\right), \\
& C_{2} \equiv \lambda x_{1} x_{2}, x_{1}\left(\lambda x_{3}, x_{3}\right), \\
& C_{3} \equiv \lambda x_{1} x_{2}, x_{2}\left(\lambda x_{3}, x_{3}\right), \\
& C_{4} \equiv \lambda x_{1} x_{2}, x_{2}\left(\lambda x_{3} x_{4}, x_{1}\right) .
\end{aligned}
$$

Since Φ is homogeneous, varied and $d[\Phi]=0$, we assume $\Gamma=\chi=\Sigma=\Psi=\Phi$. Γ is the union of 2 equivalence classes Γ_{1}, Γ_{2}, where

$$
\Gamma_{1}=\left\{C_{1}, C_{2}\right\}, \quad \Gamma_{2}=\left\{C_{3}, C_{4}\right\}
$$

Then, for Lemma 3, a discriminator D_{Φ} for Φ is the nf of $P_{\Phi} D_{\Gamma_{1}} D_{\Gamma_{2}}$ where

$$
P_{\Phi} \equiv \lambda y_{1} y_{2} t, t\left(\lambda y_{3} y_{4} y_{5} y_{6} y_{7} \cdot y_{1} t y_{4} y_{5}\right)
$$

$$
\left(\lambda y_{3} y_{4} y_{5} y_{6} y_{7} \cdot y_{2} t y_{6} y_{7}\right)
$$

Now we must build $D_{\Gamma_{1}}$ ard $D_{\Gamma_{2}} . \Gamma_{1}$ is an homogeneous and easy e.s. Therefore we must build the set $\Delta=N_{\Gamma_{1}}\left[\Gamma_{1}\right]$. As shown in the Example 9, the transformer $N_{\Gamma_{1}}$ is:

$$
\begin{array}{r}
N_{\Gamma_{1}} \equiv \lambda t y_{1} \cdots y_{12} \cdot t\left(\lambda y_{13} \cdot y_{13} \pi_{[3]} y_{4} y_{13}\right) y_{2} y_{5} \\
\left(\lambda y_{13}, y_{13} y_{9} \cdots y_{13}\right) y_{7} y_{8}
\end{array}
$$

and the obtained set is $\Sigma_{1}=\left\{E_{1}, E_{2}\right\}$ where:

$$
\begin{aligned}
& E_{1} \equiv \lambda x_{1} \cdots x_{12} \cdot x_{12} x_{9} x_{10} x_{11} \pi_{[3]}\left(\lambda x_{13} x_{11}, x_{13} x_{13}\right) x_{5} x_{7} x_{8}, \\
& E_{2} \equiv \lambda x_{1} \cdots x_{12} \cdot x_{4} x_{9} x_{10} x_{11} x_{12} x_{4}\left(\lambda x_{13}, x_{13}\right) x_{5} x_{7} x_{8} .
\end{aligned}
$$

The set Σ_{1} is discriminable, by Lemma 2 , and a discriminator $D_{\Sigma_{1}}$ is:

$$
D_{\Sigma_{1}} \equiv \lambda t y_{1} y_{2}, t Z_{1} Z_{2} Z_{3}\left(\lambda y_{3} \cdots y_{11}, y_{2}\right) Z_{4} \cdots Z_{10}\left(\lambda y_{3} \cdots y_{10} \cdot y_{1}\right)
$$

where $Z_{i}(1 \leqslant i \leqslant 10)$ are arbitrary ncs. By Lemma 1 , a discriminator $D_{\Gamma_{1}}$ is the af of $D_{\Sigma_{1}} \circ N_{\Gamma_{1}}$, i.e.:

$$
\begin{aligned}
& D_{\Gamma_{1}} \equiv \lambda t y_{1} y_{2} \cdot t\left(\lambda y_{3} \cdot y_{3} \pi_{[3]}\left(\lambda y_{4} \cdots y_{12} \cdot y_{2}\right) y_{3}\right) Z_{2} Z_{4} \\
&\left(\lambda y_{3} \cdot y_{3} Z_{8} Z_{9} Z_{10}\left(\lambda y_{4} \cdots y_{11}, y_{1}\right) y_{3}\right) Z_{6} Z_{7}
\end{aligned}
$$

where indexed Z are arbitrary ncs.
Now we must discriminate the set Γ_{2}. Since Γ_{2} is an homogeneous and easy e.s., we must build the transformer $N_{\Gamma_{2}}$. By Lemma 7, $N_{\Gamma_{2}} \equiv L_{\Gamma_{2}}$, where

$$
L_{\Gamma_{2}} \equiv \lambda t y_{1} y_{2} y_{3} y_{4} \cdot t y_{1}\left(\lambda y_{5} \cdot y_{5} y_{3} y_{4} y_{5}\right) .
$$

In fact $L_{\Gamma_{2}}\left[\Gamma_{2}\right]=\Omega_{2}=\left\{F_{1}, F_{2}\right\}$, where:

$$
\begin{aligned}
& F_{1} \equiv \lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{3} x_{4}\left(\lambda x_{5} \cdot x_{5}\right), \\
& F_{2} \equiv \lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{1}\left(\lambda x_{5} x_{6} \cdot x_{1}\right)
\end{aligned}
$$

and $d\left[\Omega_{2}\right]=0 . \Omega_{2}$ is an homogeneous and varied n.e.s. and therefore, by Lemma 2, a discriminator for Ω_{2} is:

$$
D_{\Omega_{2}} \equiv \lambda \cdot t y_{1} y_{2}, t\left(\lambda y_{3} \cdot y_{2}\right) Z_{11}\left(\lambda y_{3} y_{4} \cdot y_{1}\right) Z_{12}
$$

(where Z_{11}, Z_{12} are arbitrary ncs).
Then a discriminator for Γ_{2} is, by Lemma 1, the nf of $D_{\Omega_{2}}{ }^{\circ} L_{\Gamma_{2}}$, i.e.:

$$
D_{r_{2}} \equiv \lambda t y_{1} y_{2} \cdot t\left(\lambda y_{3} \cdot y_{2}\right)\left(\lambda y_{3} \cdot y_{3}\left(\lambda y_{4} y_{5} \cdot y_{1}\right) Z_{11} y_{3}\right) .
$$

Therefore a discriminator D_{Φ} is the nf of:

$$
\lambda t \cdot t\left(\lambda y_{1} y_{2} y_{3} y_{4} y_{5} \cdot D_{\Gamma_{1}} t y_{2} y_{3}\right)\left(\lambda y_{1} y_{2} y_{3} y_{4} y_{5} \cdot D_{\Gamma_{2}} t y_{4} y_{5}\right)
$$

i.e.:

$$
\begin{aligned}
D_{\Phi} \equiv \lambda t \cdot t & \left(\lambda y_{1} \cdots y_{5} \cdot t\left(\lambda y_{6} \cdot y_{6} \pi_{[3]}\left(\lambda y_{7} \cdots y_{15} \cdot y_{3}\right) y_{6}\right) Z_{2} Z_{5}\right) \\
& \left.\left(\lambda y_{6} \cdot y_{6} Z_{8} Z_{9} Z_{10}\left(\lambda y_{7} \cdots y_{14} \cdot y_{2}\right) y_{6}\right) Z_{6} Z_{7}\right) \\
& \left(\lambda y_{1} \cdots y_{5} \cdot t\left(\lambda y_{6} \cdot y_{5}\right)\left(\lambda y_{6} \cdot y_{6}\left(\lambda y_{7} y_{8} \cdot y_{4}\right) Z_{12} y_{6}\right)\right)
\end{aligned}
$$

where indexed Z are arbitrary ncs.
The following corollary proves, in a constructive way, the existence of Kronecker s δ for each finite set of ncs.

Corollary. For every finite set of ncs $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ there exists a nc δ_{Φ} (Kronecker's ס), such that:

$$
\delta_{\Phi} C_{i} C_{j}= \begin{cases}I & \text { if } C_{i} \equiv C_{i} \\ K I & \text { otherwise }\end{cases}
$$

Proof. The existence of a discriminator D_{Φ}, proved in the Main Theorem, assures the existence of n ncs $\Delta_{1}, \ldots, \Delta_{n}$ such that:

$$
\Delta_{i} C_{k}=\left\{\begin{array}{ll}
I & \text { if } C_{i} \equiv C_{k} \\
K I & \text { otherwise }
\end{array} \quad \text { for } 1 \leqslant k \leqslant n .\right.
$$

In fact Δ_{i} is the nf of

$$
\lambda x \cdot D_{\Phi} x(\underbrace{K I) \cdots(K I)}_{i-1}(\underbrace{K I) \cdots(K I}_{n-i}) .
$$

Then the desired δ_{Φ} is the nf of $\lambda x . D_{\Phi} x \Delta_{1} \cdots \Delta_{n}$; in fact

$$
\left(\lambda x, D_{\Phi} x \Delta_{1} \cdots \Delta_{n}\right) C_{i} C_{k} \geqslant \Delta_{i} C_{k}
$$

3. Conclusion

The present paper treats the discrimination of finite sets of ncs. Clearly any set of nfs with free variables may be transformed into a set of ncs simply by abstracting all the nfs relative to the free variables (in an arbitrary order). So the discrimination of a set of nfs may be reduced to the discrimination of a set of ncs. A different approach is given in [3] where the discrimination of a set of nfs is realized by replacing the free variables. An uniform treatment for both open and closed nfs succeeds by means of the notion of context, as was first suggested by Wadsworth (see for example [9]).

For the whole set of λ-terms, Wadsworth [9] extends the notion of discrimination in the following sense: "two λ-terms X, Y are semi-separable iff there exists a context $\mathscr{C}[]$ such that $\mathscr{C}[X] \geqslant I$ and $\mathscr{C}[Y]$ does not possess head normal form, or viceversa". Moreover in [9] two λ-terms are proved to be semi-separable iff their values in Scott's \boldsymbol{D}_{∞}-models are different. No corresponding statement for $n>2$ is known.

Acknowiedgment

The authors thank Prof. R. Hindley for pointing out a mistake in an earlier version of the definition of varied set of ncs and Prof. M. Coppo for suggesting a simplified proof of Lemma 5. Moreover they thank Prof. R. Hindley and the referee for their useful suggestions.

Appendix

Since we need here a precise notion of nesting level of parentheses, we assume to write each nf recursively as follows:

$$
N \equiv \lambda x_{1} \cdots x_{n}, x_{i}\left(N_{1}\right) \cdots\left(N_{m}\right)
$$

To simplify the proof that V_{Φ} is an inoffensive transformer for Φ, we look first at two auxiliary properties of the depth and of the cardinality of sets of ncs with more than one element (any Φ with $|\Phi|=1$ is varied).

Property 1. If $\Phi=\left\{C_{i} \mid i \leqslant n\right\}_{2} \Psi=\left\{G_{i} \mid i \leqslant n\right\}$ are two sets of ncs with $n>1$ such that $C_{i} \equiv \lambda x_{1} \cdots x_{t} . \bar{C}_{i}$ and $G_{i} \equiv \lambda x_{1} \cdots x_{t} y_{1} \cdots y_{s} . \bar{C}_{i}$ for $1 \leqslant i \leqslant n$ and $t>0, s \geqslant 0$ are independent of i, then $d[\Phi]=d[\Psi]$.

Proof. We prove this property by induction on the sum v of nesting levels of parentheses of C_{1}, \ldots, C_{n}.
First step. $v=0$ means that all ncs of Φ have no component and therefore $d[\Phi]=$ $d[\Psi]=0$.
Inductive step. Let this property be true for $v \leqslant u$, we prove it for $v=u+1$.
We distinguish the cases $a^{\prime}[\Phi]=0$ and $d[\Phi]>0$.
Case 1. $d[\Phi]=0$ means that there exist h, k such that $C_{h} \nsucc C_{k}$. Then also $G_{h} \nsim G_{k}$ by construction and therefore $d[\Psi]=0$.
Case 2. If $d[\Phi]>0$ we may assume that Φ, Ψ be homogeneous sets of ncs, since otherwise we would instead consider $H_{\Phi}[\Phi], H_{\Psi}[\Psi]$. Let

$$
\bar{C}_{i} \equiv \lambda x_{t+1} \cdots x_{w} . x_{j}\left(C_{1}^{(i)}\right) \cdots\left(C_{m}^{(i)}\right) \quad \text { for } 1 \leqslant i \leqslant n
$$

From Definition 8 it follows that $d[\Phi]=1+\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{p}\right]\right]$ where

$$
\Phi_{p}=\left\{\lambda x_{1} \cdots x_{w} \cdot C_{p}^{(i)} \mid i \leqslant n\right\} \quad \text { and } \quad d[\Psi]=1+\min _{1 \leqslant p \leqslant m}\left[d\left[\Psi_{p}\right]\right]
$$

where

$$
\Psi_{p}=\left\{\lambda x_{1} \cdots x_{t} y_{1} \cdots y_{s} x_{t+1} \cdots x_{w} . C_{p}^{(i)} \mid i \leqslant n\right\} .
$$

Since the sum of nesting levels of parentheses of the ncs belonging to Φ_{p} is less than $u+1$ then by inductive hypothesis $d\left[\Phi_{p}\right]=d\left[\Psi_{p}\right]$ for $1 \leqslant p \leqslant m$. Therefore we obtain $d[\Phi]=d[\Psi]$.

Property 2. Let $\Phi=\left\{C_{i} \mid i \leqslant n\right\}$ be a set of ncs with $n>1$ and $C_{i} \equiv \lambda x_{1} \cdots x_{w_{i}}$. $\bar{C}_{i}(1 \leqslant i \leqslant n)$, a be greater than the maximum order of variables in C_{i} for $1 \leqslant i \leqslant n$ and j be less or equal to w_{i} for $1 \leqslant i \leqslant n$. If $\bar{C}_{i}^{\prime} \equiv \bar{C}_{i}\left[x_{i} / \pi_{[a]}\right], C_{i}^{\prime} \equiv \lambda x_{1} \cdots x_{w_{i}} . C_{i}^{\prime}$, then C_{i}^{\prime} possesses $n f$ and if $\Phi^{\prime}=\left\{C_{i}^{\prime} \mid i \leqslant n\right\}$, then $|\Phi|=\left|\Phi^{\prime}\right|$ and $d[\Phi]=d\left[\Phi^{\prime}\right]$.

Proof. We make this proof by induction on the sum v of nesting levels of parentheses of C_{1}, \ldots, C_{n} :

First step. $v=0$ means that all ncs of Φ have no component, i.e. $C_{i} \equiv \lambda x_{1} \cdots x_{w_{i}} \cdot \zeta_{i}$ with $w_{i} \geqslant j(1 \leqslant i \leqslant n)$ and $a \geqslant 1$. Obviously

$$
C_{i}^{\prime} \equiv C_{i} \text { if } \quad \zeta_{i} \neq x_{i}
$$

and

$$
C_{i}^{\prime} \equiv \lambda x_{1} \cdots x_{w_{1}} y_{1} \cdots y_{a+1} \cdot y_{a+1}\left(y_{1}\right) \cdots\left(y_{a}\right) \text { otherwise. }
$$

The property foliows immediately.
Inductive step. Let this property be true for $v \leqslant u$, we prove it for $v=u+1$. Let $C_{i} \equiv \lambda x_{1} \cdots x_{w_{i}} \cdot \zeta_{i}\left(C_{1}^{(i)}\right) \cdots\left(C_{m_{i}}^{(i)}\right)$ with $w_{i} \geqslant j$ and $a>m_{i}$ for $1 \leqslant i \leqslant n$. By inductive hypothesis each $C_{p}^{(i)}=C_{p}^{(i)}\left[x_{j} / \pi_{[a]}\right]$ (for $1 \leqslant i \leqslant n$ and $1 \leqslant p \leqslant m_{i}$) possesses nf. Then we have

$$
C_{i}^{\prime} \equiv \lambda x_{1} \cdots x_{w_{i}} \cdot \zeta_{i}\left(C_{1}^{(i) \prime}\right) \cdots\left(C_{m_{i}}^{(i)}\right)\left(\text { shape a) } \quad \text { if } \zeta_{i} \neq x_{i}\right.
$$

and

$$
C_{i}^{\prime} \equiv \lambda x_{1} \cdots x_{w_{i}} y_{m_{i+1}} \cdots y_{a+1} \cdot y_{a+1}\left(C_{i}^{(i) \prime}\right) \cdots\left(C_{m_{i}}^{(i) \prime}\right)\left(y_{m_{i}+1}\right) \cdots\left(y_{a}\right)
$$

(shape b)
otherwise.
Clearly each C_{i}^{\prime} possesses nf.
We define $r_{i}=w_{i}-m_{i}(1 \leqslant i \leqslant n)$.
Proof of $\left|\Phi^{\prime}\right|=|\Phi|$. It is sufficient to prove that $C_{h} \neq{ }_{\eta} C_{k}$ implies $C_{h}^{\prime} \neq{ }_{\eta} C_{k}^{\prime}$ for all h, k such that $1 \leqslant h, k \leqslant i$. We distinguish the cases $C_{h} \nsim C_{k}$ and $C_{h} \sim C_{k}$.
Case 1. $C_{h} \not \not \subset C_{k}$. We prove a stronger result, i.e. $C_{h}^{\prime} \not C_{k}^{\prime}$. We split the proof according to three possible subcases:
(i) $\zeta_{h} \neq x_{i}, \zeta_{k} \neq x_{j}$. In this case, both C_{h}^{\prime} and C_{k}^{\prime} are of shape a and therefore $C_{h}^{\prime} \not \subset C_{k}^{\prime}$.
(ii) $r_{h} \neq r_{k}, \zeta_{h}=\zeta_{\gamma_{k}}=x_{j}$. In this case both C_{h}^{\prime} and C_{k}^{\prime} are of shape b. $C_{h}^{\prime} \not \subset C_{k}^{\prime}$ since $a+r_{h}+1-a \neq a+r_{k}+1-a$.
(iii) $\zeta_{h} \neq x_{j}, \zeta_{k}=x_{j}^{9}$. In this case C_{h}^{\prime} is of shape a and C_{k}^{\prime} is of shape b . To obtain $C_{h}^{\prime} \sim C_{k}^{\prime}$ it must be $r_{h}=r_{k}+1$ and $\zeta_{h}=x_{a+r_{k}+1} . \zeta_{h}=x_{a+r_{k}+1}$ implies $w_{h} \geqslant a+r_{k}+1$. $r_{h}=r_{k}+1$ together with $w_{h} \geqslant a+r_{k}+1$ imply $m_{h} \geqslant a$, which is contrary to our choice of a.
Case 2. $C_{h} \sim C_{k}$. We consider $\boldsymbol{H}_{\Phi}[\Phi]=\left\{G_{i} / i \leqslant n\right\}$ where $G_{i} \equiv \lambda x_{1} \cdots x_{w}$.

$$
\begin{aligned}
& \zeta_{i}\left(C_{1}^{(i)}\right) \cdots\left(C_{m_{i}}^{(i)}\right)\left(x_{w_{i}+1}\right) \cdots\left(x_{w}\right) \stackrel{\text { Df }}{=} \\
& \quad=\lambda x_{1} \cdots x_{w} \cdot \zeta_{i}\left(G_{1}^{(i)}\right) \cdots\left(G_{u_{i}}^{(i)}\right) \quad(1 \leqslant i \leqslant n) .
\end{aligned}
$$

We define

$$
G_{p}^{(i)}=G_{p}^{(i)}\left[x_{i} / \pi_{[a]}\right] \quad\left(1 \leqslant p \leqslant u_{i}\right)
$$

and

$$
G_{i}^{\prime}=\lambda x_{1} \cdots x_{w} \cdot \zeta_{i}\left[x_{j} / \pi_{[a]}\right]\left(G_{1}^{(i) \prime}\right) \cdots\left(G_{u_{i}}^{(i) \prime}\right) \quad(1 \leqslant i \leqslant n) .
$$

[^2]Clearly $G_{i}={ }_{\eta} C_{i}$ and $G_{i}^{\prime}={ }_{\eta} C_{i}^{\prime} . C_{h} \sim C_{k}$ and $C_{h} \neq{ }_{\eta} C_{k}$ means that there exists an integer $t\left(1 \leqslant t \leqslant u_{h}=u_{k}\right)$ such that $G_{t}^{(h)} \not{ }_{\eta} G_{t}^{(k)}$. By inductive hypothesis $G_{t}^{(h) \prime} \not{ }_{\eta} G_{t}^{(k) \prime}$ and therefore $G_{h}^{\prime} \neq{ }_{\eta} G_{k}^{\prime}$. Then we obtain $C_{h}^{\prime} \neq{ }_{\eta} C_{k}^{\prime}$.
Proof of $d\left[\Phi^{\prime}\right]=d[\Phi]$. We distinguish the cases $d[\Phi]=0$ and $d[\Phi]>0$.
Case 1. $d[\Phi]=0$ means that there exist h, k such that $C_{h} \nsim C_{k}$, i.e., we are in case 1 of the proof of $\left|\Phi^{\prime}\right|=|\Phi|$. Then we have $C_{h}^{\prime} \nsim C_{k}^{\prime}$, i.e., $d\left[\Phi^{\prime}\right]=0$.
Case 2. Let $G_{i}, G_{p}^{(i)}, G_{i}^{\prime}$ and $G_{p}^{(i)}$ for $1 \leqslant i \leqslant n$ and $1 \leqslant p \leqslant u_{i}$ be defined as in case 2 of the proof of $\left|\Phi^{\prime}\right|=|\Phi|$.
$d[\Phi]>0$ means that all G_{i} have the same head variable and the same component number, i.e., $\zeta_{i}=\zeta$ and $u_{i}=m$ for $1 \leqslant i \leqslant n$. Moreover we define

$$
\Phi_{p}=\left\{\lambda x_{1} \cdots x_{w}, G_{p}^{(i)} \mid i \leqslant n\right\} \quad \text { and } \quad \Phi_{p}^{*}=\left\{\lambda x_{1} \cdots x_{w}, G_{p}^{(i) \prime} \mid i \leqslant n\right\}
$$

for $1 \leqslant p \leqslant m$. By inductive hypothesis $d\left[\Phi_{p}\right]=d\left[\Phi_{p}^{*}\right]$ for $1 \leqslant p \leqslant m$. We split the proof according to two possible subcases:
(i) $\zeta \neq x_{j}$. In this case $G_{i}^{\prime} \equiv \lambda x_{1} \cdots x_{w} \cdot \zeta\left(G_{1}^{(i)}\right) \cdots\left(G_{m}^{(i) \prime}\right)$ and therefore

$$
d\left[\Phi^{\prime}\right]=1+\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{p}^{*}\right]\right]=1+\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{p}\right]\right]=d[\Phi] .
$$

(ii) $\zeta=x_{i}$. In this case

$$
G_{i}^{\prime} \equiv \lambda x_{1} \cdots x_{w} y_{m+2} \cdots y_{a+1} \cdot y_{a+1}\left(G_{1}^{(i) \prime}\right) \cdots\left(G_{m}^{(i) \prime}\right)\left(y_{n+1}\right) \cdots\left(y_{a}\right) .
$$

By Definition $8, d\left[\Phi^{\prime}\right]=1+\min _{1 \leqslant p \leqslant a}\left[d\left[\Phi_{p}^{\prime}\right]\right]$ where the sets Φ_{p}^{\prime} are so defined:

$$
\begin{aligned}
& \Phi_{p}^{\prime}=\left\{\lambda x_{1} \cdots x_{w} y_{m+1} \cdots y_{a+1} \cdot G_{p}^{(i) \prime} \mid i \leqslant n\right\} \text { for } 1 \leqslant p \leqslant m, \\
& \Phi_{p}^{\prime}=\left\{\lambda x_{1} \cdots x_{w} y_{m+1} \cdots y_{a+1} \cdot y_{p}\right\} \text { for } m+1 \leqslant p \leqslant a .
\end{aligned}
$$

From Definition $8 d\left[\Phi_{p}^{\prime}\right]=\infty$ for $m+1 \leqslant p \leqslant a$, i.e., $d\left[\Phi^{\prime}\right]=1+\min _{1 \leqslant p \leqslant m}\left[d\left[\Phi_{p}^{\prime}\right]\right]$. From Property 1 it follows that $d\left[\Phi_{p+1}^{\prime}\right]=d\left[\Phi_{p}^{*}\right]$ for $1 \leqslant p \leqslant m$ and therefore $d\left[\boldsymbol{\Phi}^{\prime}\right]=d[\boldsymbol{\Phi}]$.

Property 3. V_{Φ} is an inoffensive transformer for an homogeneous set Φ with $|\Phi|>1$.
Proof. Let $p, \Phi^{(l-1)}$ and $V_{l}(1 \leqslant l \leqslant p)$ be defined as in the proof of Lemma 5. It is clearly sufficient to prove that v_{l} is an inoffensive transformer for $\Phi^{(l-1)}(1 \leqslant l \leqslant p)$, i.e., if $\Phi^{(l-1)}=\left\{C_{i} \mid i \leqslant n\right\}, \Psi=V_{i}\left[\Phi^{(l-1)}\right]$ and $C_{i}^{\prime}=V_{i} C_{i}$, then:
(a) C_{i}^{\prime} reduces to a nc $(1 \leqslant i \leqslant n)$,
(b) $|\Psi|=n$,
(c) $d[\Psi]=d[\Phi]$.

Let's notice that if $C_{i} \equiv \lambda y_{1} \cdots y_{w_{i}} \cdot \bar{C}_{i}$, then $C_{i}^{\prime} \equiv \lambda y_{1} \cdots y_{a_{l}+w_{l}+1} \cdot \bar{C}_{i}\left[y_{i l} / \pi_{\left[a_{l}\right]}\right]$ $\left(y_{w_{1}+1}\right) \cdots\left(y_{a_{l}+w_{l}+1}\right)=_{\eta} \lambda y_{1} \cdots y_{w_{1}} . \bar{C}_{i}\left[y_{i l} / \pi_{\left[a_{1}\right]}\right]$ and so conditions a, b and c follow immediately from Property 2.

References

[1] H. Barendregt, The type free iambda calculus, in: J. Barwise, ed., Handbook of Mathematical icgic (Studies in Logic and the Foundations of Mathemetics, North-Holland, Amsterdam, 1977) 10911132.
[2] H. Barendregt, J. Bergstra, J.W. Klop and M. Volken, Degrees, reductions and representability in the lambda calculus, preprint, Utrecht University, Department of Mathematics (1976).
[3] H. Barendregt, The separability of $\boldsymbol{\beta}-\boldsymbol{\eta}$-normal forms, preprint, Utrecht University, Department of Mathematics (1976).
[4] C. Böhm, Alcune proprietà delle forme β - $\boldsymbol{\eta}$-normali del $\boldsymbol{\lambda}$-K-calcolo (I.A.C., 696, Roma, 1968).
[5] C. Böhm and M. Dezani-Ciancaglini, Combinatorial problems, combinator equations and normai forms, in: J. Loeckx, ed., Automata, Languages and Programming (Lecture Notes in Computer Science, 14, Springer-Veriag, Berlin, 1974) 185-199.
[6] C. Böhm and M. Dezani-Ciancaglini, λ-terms as total or partial functions on normal forms, in: C. Böhm, ed., A-calculus and Computer Science Theory (Lecture Notes in Computer Science, 37, Springer-Verlag, Berlin, 1975) 95-121.
[7] H.B. Curry and R. Feys, Combinatory Logic, Vol. 1 (North-Holland, Amsterdam, 1958).
[8] H.B. Curry, R. Hindley and J.P. Seldin, Combinatory Logic, Vol. 2 (North-Holland, Amsterdam, 1972).
[9] C.P. Wadsworth, The relation between computational and denotational properties for Scott's D_{∞}-models of the lambda-calculus, SIAM J. Comput., 5 (3) (1976) 488-521.

[^0]: ${ }^{6}$ We will see that a discriminator for Φ will generally depend on Φ. The writing D_{Φ} expresses this dependence.

[^1]: $7{ }_{\eta}$ denotes $\boldsymbol{c} \cdot \boldsymbol{\eta}$-cenvertibility.

[^2]: ${ }^{9}$ The symmetric case $\zeta_{h}=x_{j}, \zeta_{k} \neq x_{i}$ may be proved by the same argument.

