707 research outputs found

    Multi-scale techniques for mansonry structures

    Get PDF
    The aim of this work is, hence, to adopt the computational homogenization techniques to obtain the global response of masonry structures. Since the experimental global response curves, obtained in typical shear tests on masonry panels, show stiffness and resistance degradation, damage is the fundamental ingredients which must be taken into account in such problems. Moreover, as it is well known, due to the aforementioned softening behavior, regularization techniques are required in order to avoid spurious mesh dependencies when a numerical solution is sought in the framework of finite element method. The first step of this work is the adoption of the standard first order computational homogenization, where Cauchy continuum is used both at the macro and micro-level. This approach is well known in literature and several authors applied it to different engineering problems. An example of the adoption of regularization techniques in the context of multi-scale approaches is found in Massart (2003). Hence a regularization based on the imposition of the macroscopical length scale at the micro-level, in the framework of the fracture energy regularization, is proposed. However, as previously stated, many authors have pointed out the inner limits of first order computational homogenization. Such a formulation, in fact, may be adopted only if 1)the microstructure is very small with respect to the characteristic size at the macro-scale; 2)the absolute size of the constituents does not affect the mechanical properties of the homogenized medium and in presence of low macroscopic gradients of stresses and strains. As a consequence no localization phenomena typically exhibited by masonry can be analyzed. For masonry structures, instead, microstructural typical sizes are comparable with the macro-structural sizes; shape, size and arrangement of the constituents strongly affect the mechanical global response and high deformation gradients typically appear. An enriched formulation is then proposed in order to overcome these problems, based on the adoption of a Cosserat medium at the macro-level and a Cauchy medium at the micro-level. The theoretical and computational schemes remain the same as before but for the fact that the two media present different variables. In particular in the Cosserat medium additional strain and stress variables appear, with respect to the Cauchy continuum, as a consequence of the independent rotational degree of freedom assigned to every material point. Thus, a more sophisticated kinematic map, containing higher order polynomial expansions, is needed to state proper bridging conditions between the two levels. The innovative contribution of this work concerns the adoption of an enhanced multi-scale computational homogenization technique for studying the masonry response, together with the employment of damage models for the constituents description. Thus, by exploiting the inner regularization properties of the Cosserat continuum at the macro-level and by adopting a classical fracture energy regularization at the micro-level, localization phenomena, typically exhibited by masonry structures, are analyzed. Since this material shows a typical strain softening behavior, an ad hoc regularization technique has been developed at both levels in order to obtain objective numerical responses. To the knowledge of the author, no previous examples of Cosserat-Cauchy computational homogenization techniques, taking into account localization effects, have been presented. A possible objection to the use of a fully-coupled multi-scale technique could be related to the high computational efforts required, but here the use of parallel computing brings them down. In this context, these procedures strike a good balance between the achievement of detailed information at the scale of the constituents and the requirement of holding the computational costs down

    Low inbreeding and high pollen dispersal distances in populations of two Amazonian Forest tree species.

    Get PDF
    Made available in DSpace on 2018-06-07T01:03:50Z (GMT). No. of bitstreams: 1 ID292081.pdf: 197147 bytes, checksum: c741c2bf54ad5ef7cf716c2906330c89 (MD5) Previous issue date: 2008-02-25bitstream/item/178263/1/ID-29208-1.pd

    Classical engineering education coping with engineering profession demands

    Get PDF
    The present world scenario shows that without any doubt there is an increasing recognition that leadership in technological innovation is key to the nation’s prosperity and security in a hypercompetitive, global, knowledge-driven economy. Universities must cope with this need and change to reach the levels of required quality education in order to form the professional who will leave university to the work market. The Engineering Education Team of COPEC – Science and Education Research Council has designed this program that is knowledge centered and specially challenging, which integrates classical engineering approaches and real experience in order to achieve a high level of engineers ready to perform as professionals or researchers. The goal is to form the Engineer – a professional that is capable to learn for life and be creative in many ways.This work is financed by FEDER funds through the Competitivity Factors Operational Programme – COMPETE: POCI-01-0145-FEDER-007043 and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-010145-FEDER-007136 and project UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Online/Offline OR Composition of Sigma Protocols

    Get PDF
    Proofs of partial knowledge allow a prover to prove knowledge of witnesses for k out of n instances of NP languages. Cramer, Schoenmakers and Damgård [10] provided an efficient construction of a 3-round public-coin witness-indistinguishable (k, n)-proof of partial knowledge for any NP language, by cleverly combining n executions of Σ-protocols for that language. This transform assumes that all n instances are fully specified before the proof starts, and thus directly rules out the possibility of choosing some of the instances after the first round. Very recently, Ciampi et al. [6] provided an improved transform where one of the instances can be specified in the last round. They focus on (1, 2)-proofs of partial knowledge with the additional feature that one instance is defined in the last round, and could be adaptively chosen by the verifier. They left as an open question the existence of an efficient (1, 2)-proof of partial knowledge where no instance is known in the first round. More in general, they left open the question of constructing an efficient (k, n)-proof of partial knowledge where knowledge of all n instances can be postponed. Indeed, this property is achieved only by inefficient constructions requiring NP reductions [19]. In this paper we focus on the question of achieving adaptive-input proofs of partial knowledge. We provide through a transform the first efficient construction of a 3-round public-coin witness-indistinguishable (k, n)-proof of partial knowledge where all instances can be decided in the third round. Our construction enjoys adaptive-input witness indistinguishability. Additionally, the proof of knowledge property remains also if the adversarial prover selects instances adaptively at last round as long as our transform is applied to a proof of knowledge belonging to the widely used class of proofs of knowledge described in [9,21]. Since knowledge of instances and witnesses is not needed before the last round, we have that the first round can be precomputed and in the online/offline setting our performance is similar to the one of [10]. Our new transform relies on the DDH assumption (in contrast to the transforms of [6,10] that are unconditional)

    Four-Round Concurrent Non-Malleable Commitments from One-Way Functions

    Get PDF
    How many rounds and which assumptions are required for concurrent non-malleable commitments? The above question has puzzled researchers for several years. Pass in [TCC 2013] showed a lower bound of 3 rounds for the case of black-box reductions to falsifiable hardness assumptions with respect to polynomial-time adversaries. On the other side, Goyal [STOC 2011], Lin and Pass [STOC 2011] and Goyal et al. [FOCS 2012] showed that one-way functions (OWFs) are sufficient with a constant number of rounds. More recently Ciampi et al. [CRYPTO 2016] showed a 3-round construction based on subexponentially strong one-way permutations. In this work we show as main result the first 4-round concurrent non-malleable commitment scheme assuming the existence of any one-way function. Our approach builds on a new security notion for argument systems against man-in-the-middle attacks: Simulation-Witness-Independence. We show how to construct a 4-round one-many simulation-witnesses-independent argument system from one-way functions. We then combine this new tool in parallel with a weak form of non-malleable commitments constructed by Goyal et al. in [FOCS 2014] obtaining the main result of our work

    Scientific, Back-Illuminated CCD Development for the Transiting Exoplanet Survey Satellite

    Get PDF
    We describe the development of the fully depleted, back illuminated charge coupled devices for the Transiting Exoplanet Survey Satellite, which includes a set of four wide angle telescopes, each having a 2x2 array of CCDs. The devices are fabricated on the newly upgraded 200-mm wafer line at Lincoln Laboratory. We discuss methods used to produce the devices and present early performance results from the 100- micron thick, 15x15-microns, 2k x 4k pixel frame transfer CCDs

    Validação de marcadores moleculares do tipo microssatélites em bananeira.

    Get PDF
    A banana é um dos produtos alimentares mais produzidos no mundo atualmente, com mais de 130 países produtores. Torna-se muito importante pois é grande geradora de fonte e renda empregando milhões de pessoas em todo o território nacional, principalmente no Nordeste do pais, onde a maioria dos produtores são de baixa renda. Dentre os fatores limitantes da cultura está o cultivo de variedades pouco resistentes a pragas e doenças; e uma estratégia para a solução deste problema é a do programa de melhoramento na busca de variedades mais produtivas e resistentes. Sendo assim os marcadores moleculares torna-se uma ferramenta acessória aos programas de melhoramento. Dentre os marcadores moleculares mais utilizados nos estudos genéticos em bananeira, os marcadores microssatélites, destacam-se por serem altamente informativos, multialélicos e por apresentarem alta reprodutibilidade. Este trabalho objetivou a validação de marcadores moleculares microssatélites EST e BAC ? SSRs para auxílio ao programa de mapeamento genético da bananeira, em diplóides de bananeira contrastantes para resistência a Sigatoka amarela e negra.PDF. 033
    • …
    corecore