11 research outputs found

    Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations

    Get PDF

    The Spitzer–HETDEX Exploratory Large-Area Survey. IV. Model-based Multiwavelength Photometric Catalog

    No full text
    We present a 0.3–4.5 μ m 16-band photometric catalog for the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers an ∼27 deg ^2 field within the footprint of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). Here we present new DECam imaging and an rizK _s band–selected catalog of four million sources extracted using a fully model-based approach. We validate our photometry by comparing with the model-based DECam Legacy Survey. We analyze the differences between model-based and aperture photometry by comparing with the previous SHELA catalog, finding that our model-based photometry can measure point sources to fainter fluxes and better capture the full emission of resolved sources. The catalog is 80% (50%) complete at riz ∼ 24.7 (25.1) AB mag, and the optical photometry reaches a 5 σ depth of ∼25.5 AB mag. We measure photometric redshifts and achieve a 1 σ scatter of Δ z /(1 + z ) of 0.04 with available spectroscopic redshifts at 0 ≤ z ≤ 1. This large-area, multiwavelength photometric catalog, combined with spectroscopic information from HETDEX, will enable a wide range of extragalactic science investigations

    ALMA 1.1mm Observations of a Conservative Sample of High Redshift Massive Quiescent Galaxies in SHELA

    Full text link
    We present a sample of 30 massive (log(M/M)>11(M_{\ast}/M_\odot) >11) z=35z=3-5 quiescent galaxies selected from the \textit{Spitzer-}HETDEX Exploratory Large Area (SHELA) Survey and observed at 1.1mm with Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations. These ALMA observations would detect even modest levels of dust-obscured star-formation, on order of 20 Myr1\sim 20 \ M_\odot \textrm{yr}^{-1} at z4z\sim4 at a 1σ1\sigma level, allowing us to quantify the amount of contamination from dusty star-forming sources in our quiescent sample. Starting with a parent sample of candidate massive quiescent galaxies from the Stevans et al. 2021 v1 SHELA catalog, we use the Bayesian \textsc{Bagpipes} spectral energy distribution fitting code to derive robust stellar masses (MM_*) and star-formation rates (SFRs) for these sources, and select a conservative sample of 36 candidate massive (M>1011MM_* > 10^{11}M_\odot) quiescent galaxies, with specific SFRs at >2σ>2\sigma below the star-forming main sequence at z4z\sim4. Based on ALMA imaging, six of these candidate quiescent galaxies have the presence of significant dust-obscured star-formation, thus were removed from our final sample. This implies a 17%\sim 17\% contamination rate from dusty star-forming galaxies with our selection criteria using the v1 SHELA catalog. This conservatively-selected quiescent galaxy sample at z=35z=3-5 will provide excellent targets for future observations to better constrain how massive galaxies can both grow and shut-down their star-formation in a relatively short time period.Comment: 16 pages, 13 figure

    A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars

    No full text
    We report the discovery of an accreting supermassive black hole at z = 8.679. This galaxy, denoted here as CEERS_1019, was previously discovered as a Ly α -break galaxy by Hubble with a Ly α redshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we have observed this source with JWST/NIRSpec, MIRI, NIRCam, and NIRCam/WFSS and uncovered a plethora of emission lines. The H β line is best fit by a narrow plus a broad component, where the latter is measured at 2.5 σ with an FWHM ∼1200 km s ^−1 . We conclude this originates in the broadline region of an active galactic nucleus (AGN). This is supported by the presence of weak high-ionization lines (N V, N IV], and C III]), as well as a spatial point-source component. The implied mass of the black hole (BH) is log ( M _BH / M _⊙ ) = 6.95 ± 0.37, and we estimate that it is accreting at 1.2 ± 0.5 times the Eddington limit. The 1–8 μ m photometric spectral energy distribution shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M _⊙ ∼9.5) and highly star-forming (star formation rate, or SFR ∼ 30 M _⊙ yr ^−1 ; log sSFR ∼ − 7.9 yr ^−1 ). The line ratios show that the gas is metal-poor ( Z / Z _⊙ ∼ 0.1), dense ( n _e ∼ 10 ^3 cm ^−3 ), and highly ionized (log U ∼ − 2.1). We use this present highest-redshift AGN discovery to place constraints on BH seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from very massive BH seeds is required to form this object

    COSMOS-Web: An Overview of the JWST Cosmic Origins Survey

    No full text
    We present the survey design, implementation, and outlook for COSMOS-Web, a 255 hour treasury program conducted by the James Webb Space Telescope in its first cycle of observations. COSMOS-Web is a contiguous 0.54 deg2^2 NIRCam imaging survey in four filters (F115W, F150W, F277W, and F444W) that will reach 5σ\sigma point source depths ranging \sim27.5-28.2 magnitudes. In parallel, we will obtain 0.19 deg2^2 of MIRI imaging in one filter (F770W). COSMOS-Web will build on the rich heritage of multiwavelength observations and data products available in the COSMOS field. The design of COSMOS-Web is motivated by three primary science goals: (1) to discover thousands of galaxies in the Epoch of Reionization (6464 and place constraints on the formation of the Universe's most massive galaxies (M>1010M_\star>10^{10} M_\odot), and (3) directly measure the evolution of the stellar mass to halo mass relation using weak gravitational lensing out to z2.5z\sim2.5 and measure its variance with galaxies' star formation histories and morphologies. In addition, we anticipate COSMOS-Web's legacy value to reach far beyond these scientific goals, touching many other areas of astrophysics, such as the identification of the first direct collapse black hole candidates, ultracool sub-dwarf stars in the Galactic halo, and possibly the identification of z>10z>10 pair-instability supernovae. In this paper we provide an overview of the survey's key measurements, specifications, goals, and prospects for new discovery

    Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations

    Get PDF
    Lyman-break galaxy (LBG) candidates at z ≳ 10 are rapidly being identified in James Webb Space Telescope (JWST)/NIRCam observations. Due to the (redshifted) break produced by neutral hydrogen absorption of rest-frame UV photons, these sources are expected to drop out in the bluer filters while being well detected in redder filters. However, here we show that dust-enshrouded star-forming galaxies at lower redshifts (z ≲ 7) may also mimic the near-infrared (near-IR) colors of z > 10 LBGs, representing potential contaminants in LBG candidate samples. First, we analyze CEERS-DSFG-1, a NIRCam dropout undetected in the F115W and F150W filters but detected at longer wavelengths. Combining the JWST data with (sub)millimeter constraints, including deep NOEMA interferometric observations, we show that this source is a dusty star-forming galaxy (DSFG) at z ≈ 5.1. We also present a tentative 2.6σ SCUBA-2 detection at 850 μm around a recently identified z ≈ 16 LBG candidate in the same field and show that, if the emission is real and associated with this candidate, the available photometry is consistent with a z ∼ 5 dusty galaxy with strong nebular emission lines despite its blue near-IR colors. Further observations on this candidate are imperative to mitigate the low confidence of this tentative submillimeter emission and its positional uncertainty. Our analysis shows that robust (sub)millimeter detections of NIRCam dropout galaxies likely imply z ∼ 4–6 redshift solutions, where the observed near-IR break would be the result of a strong rest-frame optical Balmer break combined with high dust attenuation and strong nebular line emission, rather than the rest-frame UV Lyman break. This provides evidence that DSFGs may contaminate searches for ultra-high redshift LBG candidates from JWST observations
    corecore