368 research outputs found
Selection for inpatient rehabilitation after severe stroke: What factors influence rehabilitation assessor decision making?
Objectives: This study aimed to identify factors that assessors considered important in decision-making regarding suitability for inpatient rehabilitation after acute severe stroke.Design: Multi-site prospective observational cohort study. Subjects: Consecutive acute, severe stroke patients and their assessors for inpatient rehabilitation. Methods: Rehabilitation assessors completed a questionnaire, rating the importance (10 point visual analogue scale) and direction (positive, negative or neutral) of 15 patient related and 2 organisational items potentially affecting their decision regarding patients’ acceptance to rehabilitation. Results: Of the 75 patients referred to rehabilitation and included in this study 61 (81.3%) were accepted for inpatient rehabilitation. The items considered to be most important in the decision to accept the patient for rehabilitation were pre-morbid cognition, pre-morbid mobility and pre-morbid communication. For those not accepted the most important items were current mobility, social support and current cognition. Factor analysis revealed 3 underlying factors, interpreted as post-stroke status, pre-morbid status, and social attributes, accounting for 61.8% of the total variance. All were independently associated with acceptance for rehabilitation (p < 0.05). Conclusions: This study highlights the importance of pre-morbid function and social factors in addition to post-stroke function in the decision making process for acceptance to rehabilitation following severe stroke. Future models for selection for rehabilitation should consider inclusion of these factors
Characteristics of thunderstorm centers during the development of mesoscale convective systems over the south of Western Siberia
In this work, estimates of thunderstorm activity during the passage of mesoscale convective complexes (MCC) in the south of Western Siberia for 2016–2019 were obtained. When analyzing the trajectories of the MCC movement, it was revealed that it passes from the southwest to the northeast. The duration of the thunderstorm activity generated by the MCC is on average about 9 hours. At the same time, the duration of thunderstorm activity less than 4 hours was not noted. average area of a thunderstorm center ~ 5700 km2. The average distance covered by a thunderstorm is ~ 470 km. According to WWLLN, the number of lightning strikes is ~ 530
Determining the common patterns of the action of nanoparticles of various compositions and structures on physiological and biochemical processes in plants
Technogenic and natural nanomaterials are alien to living systems. The negative effect of nanomaterials may be due to their accumulation in intracellular organelles. The properties of nanoparticles are determined not only by their size, which manifests itself in the activation of a thermodynamic variable, but also by their chemical structure and shape, their ability to aggregate. The effect of metal nanoparticles and oxides of cobalt and titanium on the development and growth of plants has been studied. An important established fact is the ability of oxide nanoparticles, unlike metals themselves, to accumulate in living systems. Transmission electron microscopy, carried out by means of electron microscopic analysis, has revealed interstitial bioaccumulation of nanoparticles of cobalt oxide and titanium oxide in the form of aggregates 80-300 nm in size. If nanoparticles quickly aggregate, they are less dangerous for organisms than single nanoparticles, since a large aggregate of nanoparticles cannot get inside the cell. The rate and dynamics of deposition of nanoparticles of metals and their oxides in water are different. Metal NPs are deposited much more slowly than titanium dioxide. Moreover, the safety of NPs depends on their size and concentration. Biogenic nanoparticles with a size of 35-75 nm have high biological activity, biocompatibility and environmental safety. There is a direct correlation between the energy produced in cells, which is necessary for seed viability, and an increase in the number of protons under the action of metal nanoparticles, which leads to an increase in the permeability of cell membranes and the activity of enzymes and phytohormones
Scaling and singularities in the entrainment of globally-coupled oscillators
The onset of collective behavior in a population of globally coupled
oscillators with randomly distributed frequencies is studied for phase
dynamical models with arbitrary coupling. The population is described by a
Fokker-Planck equation for the distribution of phases which includes the
diffusive effect of noise in the oscillator frequencies. The bifurcation from
the phase-incoherent state is analyzed using amplitude equations for the
unstable modes with particular attention to the dependence of the nonlinearly
saturated mode on the linear growth rate . In general
we find where is the
diffusion coefficient and is the mode number of the unstable mode. The
unusual factor arises from a singularity in the cubic term of
the amplitude equation.Comment: 11 pages (Revtex); paper submitted to Phys. Rev. Let
Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy
Hashimoto's thyroiditis (HT), the most frequent autoimmune thyroid disorders (AITDs), is the leading cause of hypothyroidism in the iodine-sufficient areas of the world. About 20-30% of patients suffers from HT, whose cause is thought to be a combination of genetic susceptibility and environmental factors that causes the loss of immunological tolerance, with a consequent autoimmune attack to the thyroid tissue and appearance of the disease. The pathologic features of lymphocytic infiltration, especially of T cells, and follicular destruction are the histological hallmark of autoimmune thyroiditis (AIT), that lead to gradual atrophy and fibrosis. An important role in the immune-pathogenesis of AITDs is due to chemokines and cytokines. In about 20% of patients, AITDs are associated with other organ specific/systemic autoimmune disorders. Many studies have demonstrated the relationship between papillary thyroid cancer and AITD. The treatment of hypothyroidism, as result of AIT, consists in daily assumption of synthetic levothyroxine
One-loop Quantum Gravity in Schwarzschild Spacetime
The quantum theory of linearized perturbations of the gravitational field of
a Schwarzschild black hole is presented. The fundamental operators are seen to
be the perturbed Weyl scalars and associated with the
Newman-Penrose description of the classical theory. Formulae are obtained for
the expectation values of the modulus squared of these operators in the
Boulware, Unruh and Hartle-Hawking quantum states. Differences between the
renormalized expectation values of both and
in the three quantum states are evaluated
numerically.Comment: 39 pages, 11 Postscript figures, using revte
Evolution of ischemic damage and behavioural deficit over 6 months after MCAo in the rat: Selecting the optimal outcomes and statistical power for multi-centre preclinical trials
Key disparities between the timing and methods of assessment in animal stroke studies and clinical trial may be part of the reason for the failure to translate promising findings. This study investigates the development of ischemic damage after thread occlusion MCAo in the rat, using histological and behavioural outcomes. Using the adhesive removal test we investigate the longevity of behavioural deficit after ischemic stroke in rats, and examine the practicality of using such measures as the primary outcome for future studies. Ischemic stroke was induced in 132 Spontaneously Hypertensive Rats which were assessed for behavioural and histological deficits at 1, 3, 7, 14, 21, 28 days, 12 and 24 weeks (n>11 per timepoint). The basic behavioural score confirmed induction of stroke, with deficits specific to stroke animals. Within 7 days, these deficits resolved in 50% of animals. The adhesive removal test revealed contralateral neglect for up to 6 months following stroke. Sample size calculations to facilitate the use of this test as the primary experimental outcome resulted in cohort sizes much larger than are the norm for experimental studies. Histological damage progressed from a necrotic infarct to a hypercellular area that cleared to leave a fluid filled cavity. Whilst absolute volume of damage changed over time, when corrected for changes in hemispheric volume, an equivalent area of damage was lost at all timepoints. Using behavioural measures at chronic timepoints presents significant challenges to the basic science community in terms of the large number of animals required and the practicalities associated with this. Multicentre preclinical randomised controlled trials as advocated by the MultiPART consortium may be the only practical way to deal with this issue
Theory of terahertz electric oscillations by supercooled superconductors
We predict that below T_c a regime of negative differential conductivity
(NDC) can be reached. The superconductor should be supercooled to T<T_c in the
normal phase under DC voltage. In such a nonequilibrium situation the NDC of
the superconductor is created by the excess conductivity of the fluctuation
Cooper pairs. We propose NDC of supercooled superconductors to be used as an
active medium for generation of electric oscillations. Such generators can be
used in the superconducting electronics as a new type THz source of radiation.
Oscillations can be modulated by the change of the bias voltage, electrostatic
doping by a gate electrode when the superconductor is the channel of a field
effect transistor, or by light. When small amplitude oscillations are
stabilized near the critical temperature T_c the generator can be used as a
bolometer. The essential for the applications NDC is predicted by the solution
of the Boltzmann kinetic equation for the metastable in the normal phase Cooper
pairs. Boltzmann equation for fluctuation Cooper pairs is a result of
state-of-the-art application of the microscopic theory of superconductivity.
Our theoretical conclusions are based on some approximations like time
dependent Ginzburg-Landau theory, but nevertheless can reliably predict
appearance of NDC. The maximal frequency at which superconductors can operate
as generators is determined by the critical temperature \hbar omega_max ~ k_B
T_c. For high-T_c superconductors this maximal frequency falls well inside the
terahertz range. Technical conditions to avoid nucleation of the
superconducting phase are briefly discussed. We suggest that nanostructured
high-T_c superconductors patterned in a single chip can give the best technical
performance of the proposed oscillator.Comment: 7 page
Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
Extreme ultraviolet (EUV) lithography is currently entering high-volume manufacturing to enable the continued miniaturization of semiconductor devices. The required EUV light, at 13.5 nm wavelength, is produced in a hot and dense laser-driven tin plasma. The atomic origins of this light are demonstrably poorly understood. Here we calculate detailed tin opacity spectra using the Los Alamos atomic physics suite ATOMIC and validate these calculations with experimental comparisons. Our key finding is that EUV light largely originates from transitions between multiply-excited states, and not from the singly-excited states decaying to the ground state as is the current paradigm. Moreover, we find that transitions between these multiply-excited states also contribute in the same narrow window around 13.5 nm as those originating from singly-excited states, and this striking property holds over a wide range of charge states. We thus reveal the doubly magic behavior of tin and the origins of the EUV light
The role of cytokines in bone remodeling and the pathogenesis of postmenopausal osteoporosis
About 20 years ago osteoimmunology was identified as new field of scientific knowledge. It studies patterns of immune and bone system interactions in normal and pathological conditions. The osteoimmunology achievements have fundamentally changed our ideas about the pathogenesis of human skeleton diseases, including osteoporosis. This review presents cytokines key role in physiological and pathological bone remodeling. The issues of interaction between cytokines, osteoblasts and osteoclasts are described in detail. The crucial role of proinflammatory cytokines increased production by immunocompetent cells in the postmenopausal osteoporosis development has been characterized. Pubmed, Scopus, Web of Science, MedLine, eLIBRARY.RU databases were used for systematic literature search
- …