217 research outputs found

    Sensing human hand motions for controlling dexterous robots

    Get PDF
    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion

    Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing

    Get PDF
    Rationale: Lithium remains the most effective treatment for bipolar disorder and also has important effects to lower suicidal behaviour, a property that may be linked to its ability to diminish impulsive, aggressive behaviour. The antioxidant drug, ebselen, has been proposed as a possible lithium-mimetic based on its ability in animals to inhibit inositol monophosphatase (IMPase), an action which it shares with lithium. Objectives: The aim of the study was to determine whether treatment with ebselen altered emotional processing and diminished measures of risk-taking behaviour. Methods: We studied 20 healthy participants who were tested on two occasions receiving either ebselen (3600 mg over 24 h) or identical placebo in a double-blind, randomized, cross-over design. Three hours after the final dose of ebselen/placebo, participants completed the Cambridge Gambling Task (CGT) and a task that required the detection of emotional facial expressions (facial emotion recognition task (FERT)). Results: On the CGT, relative to placebo, ebselen reduced delay aversion while on the FERT, it increased the recognition of positive vs negative facial expressions. Conclusions: The study suggests that at the dosage used, ebselen can decrease impulsivity and produce a positive bias in emotional processing. These findings have implications for the possible use of ebselen in the disorders characterized by impulsive behaviour and dysphoric mood

    Variation in histone configurations correlates with gene expression across nine inbred strains of mice.

    Get PDF
    The diversity outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression, and as such are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), and DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represented a distinct combination of the four histone modifications. We found that the epigenetic landscape was highly variable across the DO founders and was associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice

    Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer\u27s Dementia.

    Get PDF
    Genetic mechanisms underlying age-related cognitive decline and dementia remain poorly understood. Here, we take advantage of the Diversity Outbred mouse population to utilize quantitative trait loci mapping and identify Dlgap2 as a positional candidate responsible for modifying working memory decline. To evaluate the translational relevance of this finding, we utilize longitudinal cognitive measures from human patients, RNA expression from post-mortem brain tissue, data from a genome-wide association study (GWAS) of Alzheimer\u27s dementia (AD), and GWAS results in African Americans. We find an association between Dlgap2 and AD phenotypes at the variant, gene and protein expression, and methylation levels. Lower cortical DLGAP2 expression is observed in AD and is associated with more plaques and tangles at autopsy and faster cognitive decline. Results will inform future studies aimed at investigating the cross-species role of Dlgap2 in regulating cognitive decline and highlight the benefit of using genetically diverse mice to prioritize novel candidates

    Department of Pathology, Thomas Jefferson University, Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors.

    Get PDF
    BACKGROUND: Although numerous mouse models of breast carcinomas have been developed, we do not know the extent to which any faithfully represent clinically significant human phenotypes. To address this need, we characterized mammary tumor gene expression profiles from 13 different murine models using DNA microarrays and compared the resulting data to those from human breast tumors. RESULTS: Unsupervised hierarchical clustering analysis showed that six models (TgWAP-Myc, TgMMTV-Neu, TgMMTV-PyMT, TgWAP-Int3, TgWAP-Tag, and TgC3(1)-Tag) yielded tumors with distinctive and homogeneous expression patterns within each strain. However, in each of four other models (TgWAP-T121, TgMMTV-Wnt1, Brca1Co/Co;TgMMTV-Cre;p53+/- and DMBA-induced), tumors with a variety of histologies and expression profiles developed. In many models, similarities to human breast tumors were recognized, including proliferation and human breast tumor subtype signatures. Significantly, tumors of several models displayed characteristics of human basal-like breast tumors, including two models with induced Brca1 deficiencies. Tumors of other murine models shared features and trended towards significance of gene enrichment with human luminal tumors; however, these murine tumors lacked expression of estrogen receptor (ER) and ER-regulated genes. TgMMTV-Neu tumors did not have a significant gene overlap with the human HER2+/ER- subtype and were more similar to human luminal tumors. CONCLUSION: Many of the defining characteristics of human subtypes were conserved among the mouse models. Although no single mouse model recapitulated all the expression features of a given human subtype, these shared expression features provide a common framework for an improved integration of murine mammary tumor models with human breast tumors

    The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics

    Get PDF
    Complex traits and disease comorbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of resources needed to investigate biomolecular networks and systems-level phenotypes underlying complex traits, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis. Its novel and important features include a high level of genetic diversity, a large population size to ensure sufficient power in high-dimensional studies, and high mapping precision through accumulation of independent recombination events. Implementation of the Collaborative Cross has been ongoing at the Oak Ridge National Laboratory (ORNL) since May 2005. Production has been systematically managed using a software-assisted breeding program with fully traceable lineages, performed in a controlled environment. Currently, there are 650 lines in production, and close to 200 lines are now beyond their seventh generation of inbreeding. Retired breeders enter a high-throughput phenotyping protocol and DNA samples are banked for analyses of recombination history, allele drift and loss, and population structure. Herein we present a progress report of the Collaborative Cross breeding program at ORNL and a description of the kinds of investigations that this resource will support
    • …
    corecore