97 research outputs found

    The economic regeneration of London docklands: a labour market analysis

    Get PDF
    PhDIn 1980 the London Docklands Development Corporation (LDDC) was designated as the organisation responsible for the physical, economic and social regeneration of the area in East London known as London Docklands. It-is argued that an evaluation of LDDC policy impact on the labour market will be useful for two reasons. First, it will make a contribution to the academic discussion on the causes of economic and social change in this part of London. This is made all the more necessary because much previous research has concentrated on political issues, whilst paying only lip-service to many of the other economic and social forces that cause change. Second, at a practical level, the controversial nature of LDDC initiatives necessitates a detailed study of policy impact. A conceptual model of the labour market is developed based on segmented labour market theory. It includes the key influences on the demand and supply side of the labour market and the interaction process between demand and supply. This allows the evaluation of LDDC policy to take account of other forces that cause change in the labour market. The broad conclusion is that LDDC policy has had a very limited impact on the local labour market and an explanation of change in London Docklands must include other economic and social forces

    Briefing: UK Ministry of Defence Force Protection Engineering Programme

    Get PDF
    The Defence Science and Technology Laboratory sponsored, QinetiQ-led Force Protection Engineering Research Programme has two main strands, applied and underpinning research. The underpinning strand is led by Blastech Ltd. One focus of this research is into the response of geomaterials to threat loading. The programme on locally won fill is split into four main characterisation strands: high-stress (GPa) static pressure–volume; medium-rate pressure–volume (split Hopkinson bar); high-rate (flyer plate) pressure–volume; and unifying modelling research at the University of Sheffield, which has focused on developing a high-quality dataset for locally won fill in low and medium strain rates. With the test apparatus at Sheffield well-controlled tests can be conducted at both high strain rate and pseudo-static rates up to stress levels of 1 GPa. The University of Cambridge has focused on using one-dimensional shock experiments to examine high-rate pressure–volume relationships. Both establishments are examining the effect of moisture content and starting density on emergent rate effects. Blastech Ltd has been undertaking carefully controlled fragment impact experiments, within the dataspace developed by the Universities of Sheffield and Cambridge. The data from experiments are unified by the QinetiQ-led modelling team, to predict material behaviour and to derive a scalable locally won fill model for use in any situation

    The Lantern Vol. 67, No. 2, Spring 2000

    Get PDF
    • Dearest Yarn-Spinner • My Poem, This Tongue In Your Eye • 15th & Rodman • Vision • Linguistics • Casting Cartesian Shadows • On the Defensive • Sea Sick but Still Docked • Urban Dreams • Wolf of the Steppes • Josephine • Happy Birthday to Me • I Have Never Been to Africa • Pa-pou • Onion[s] • Intimacy • Three Trick Pony • Blazer • In My Tea • Emmaless • Dreamcatcher • Repetition • With the Turn of the Reel • Fault Lines • The Shrink Is In • The dancE • Exam • Another Post-Apocalyptic Christmas • The Circumstances of My Prolonged Depressionhttps://digitalcommons.ursinus.edu/lantern/1156/thumbnail.jp

    COMAP Early Science: VIII. A Joint Stacking Analysis with eBOSS Quasars

    Full text link
    We present a new upper limit on the cosmic molecular gas density at z=2.43.4z=2.4-3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 282 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.210 Jy km/s. Depending on the assumptions made, this value can be interpreted as either an average CO line luminosity LCOL'_\mathrm{CO} of eBOSS quasars of 7.30×1010\leq 7.30\times10^{10} K km pc2^2 s1^{-1}, or an average molecular gas density ρH2\rho_\mathrm{H_2} in regions of the universe containing a quasar of 2.02×108\leq 2.02\times10^8 M_\odot cMpc3^{-3}. The LCOL'_\mathrm{CO} upper limit falls among CO line luminosities obtained from individually-targeted quasars in the COMAP redshift range, and the ρH2\rho_\mathrm{H_2} value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on these achieved sensitivities, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data.Comment: 15 pages, 8 figures. To be submitted to Ap

    COMAP Early Science: VIII. A Joint Stacking Analysis with eBOSS Quasars

    Get PDF
    We present a new upper limit on the cosmic molecular gas density at z = 2.4 − 3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation SpectroscopicSurvey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.129 Jykm/s. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosity L′CO of eBOSS quasars of ≤ 1.26 × 1011 K km pc2s−1, or an average molecular gas density ρH2 in regions of the universe containing a quasar of ≤ 1.52 × 108 M⊙ cMpc−3. The L′ CO upper limit falls among CO line luminosities obtained fromindividually-targeted quasars in the COMAP redshift range, and the ρH2 value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both asa technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    COMAP Early Science: VII. Prospects for CO Intensity Mapping at Reionization

    Full text link
    We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map CO(1--0) and CO(2--1) at reionization redshifts (z58z\sim5-8) in addition to providing a significant boost to the z3z\sim3 sensitivity of the Pathfinder. We examine a set of existing models of the EoR CO signal, and find power spectra spanning several orders of magnitude, highlighting our extreme ignorance about this period of cosmic history and the value of the COMAP-EoR measurement. We carry out the most detailed forecast to date of an intensity mapping cross-correlation, and find that five out of the six models we consider yield signal to noise ratios (S/N) 20\gtrsim20 for COMAP-EoR, with the brightest reaching a S/N above 400. We show that, for these models, COMAP-EoR can make a detailed measurement of the cosmic molecular gas history from z28z\sim2-8, as well as probe the population of faint, star-forming galaxies predicted by these models to be undetectable by traditional surveys. We show that, for the single model that does not predict numerous faint emitters, a COMAP-EoR-type measurement is required to rule out their existence. We briefly explore prospects for a third-generation Expanded Reionization Array (COMAP-ERA) capable of detecting the faintest models and characterizing the brightest signals in extreme detail.Comment: Paper 7 of 7 in series. 19 pages, 10 figures, to be submitted to Ap

    COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey

    Full text link
    We present early results from the COMAP Galactic Plane Survey conducted between June 2019 and April 2021, spanning 20<<4020^\circ<\ell<40^\circ in Galactic longitude and |b|<1.\!\!^{\circ}5 in Galactic latitude with an angular resolution of 4.54.5^{\prime}. The full survey will span 20\ell \sim 20^{\circ}- 220220^{\circ} and will be the first large-scale radio continuum survey at 3030 GHz with sub-degree resolution. We present initial results from the first part of the survey, including diffuse emission and spectral energy distributions (SEDs) of HII regions and supernova remnants. Using low and high frequency surveys to constrain free-free and thermal dust emission contributions, we find evidence of excess flux density at 3030\,GHz in six regions that we interpret as anomalous microwave emission. Furthermore we model UCHII contributions using data from the 55\,GHz CORNISH catalogue and reject this as the cause of the 3030\,GHz excess. Six known supernova remnants (SNR) are detected at 3030\,GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 3030\,GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free-free emission. The full COMAP Galactic plane survey, to be released in 2023/2024, will be an invaluable resource for Galactic astrophysics.Comment: Paper 6 of 7 in series. 28 pages, 10 figures, submitted to Ap

    COMAP Early Science: IV. Power Spectrum Methodology and Results

    Full text link
    We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrumental beam smoothing and various filter operations applied during the low-level data processing. The power spectra estimated in this way have allowed us to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning technique for observations. We present the power spectra from our first season of observing and demonstrate that the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a level below the noise. Using the FPXS method, and combining data on scales k=0.0510.62Mpc1k=0.051-0.62 \,\mathrm{Mpc}^{-1} we estimate PCO(k)=2.7±1.7×104μK2Mpc3P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4\mu\textrm{K}^2\mathrm{Mpc}^3, the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum in the literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap
    corecore