28,794 research outputs found
Olig2/Plp-positive progenitor cells give rise to Bergmann glia in the cerebellum.
NG2 (nerve/glial antigen2)-expressing cells represent the largest population of postnatal progenitors in the central nervous system and have been classified as oligodendroglial progenitor cells, but the fate and function of these cells remain incompletely characterized. Previous studies have focused on characterizing these progenitors in the postnatal and adult subventricular zone and on analyzing the cellular and physiological properties of these cells in white and gray matter regions in the forebrain. In the present study, we examine the types of neural progeny generated by NG2 progenitors in the cerebellum by employing genetic fate mapping techniques using inducible Cre-Lox systems in vivo with two different mouse lines, the Plp-Cre-ER(T2)/Rosa26-EYFP and Olig2-Cre-ER(T2)/Rosa26-EYFP double-transgenic mice. Our data indicate that Olig2/Plp-positive NG2 cells display multipotential properties, primarily give rise to oligodendroglia but, surprisingly, also generate Bergmann glia, which are specialized glial cells in the cerebellum. The NG2+ cells also give rise to astrocytes, but not neurons. In addition, we show that glutamate signaling is involved in distinct NG2+ cell-fate/differentiation pathways and plays a role in the normal development of Bergmann glia. We also show an increase of cerebellar oligodendroglial lineage cells in response to hypoxic-ischemic injury, but the ability of NG2+ cells to give rise to Bergmann glia and astrocytes remains unchanged. Overall, our study reveals a novel Bergmann glia fate of Olig2/Plp-positive NG2 progenitors, demonstrates the differentiation of these progenitors into various functional glial cell types, and provides significant insights into the fate and function of Olig2/Plp-positive progenitor cells in health and disease
Kondo effect in coupled quantum dots with RKKY interaction: Finite temperature and magnetic field effects
We study transport through two quantum dots coupled by an RKKY interaction as
a function of temperature and magnetic field. By applying the Numerical
Renormalization Group (NRG) method we obtain the transmission and the linear
conductance. At zero temperature and magnetic field, we observe a quantum phase
transition between the Kondo screened state and a local spin singlet as the
RKKY interaction is tuned. Above the critical RKKY coupling the Kondo peak is
split. However, we find that both finite temperature and magnetic field restore
the Kondo resonance. Our results agree well with recent transport experiments
on gold grain quantum dots in the presence of magnetic impurities.Comment: 4 pages, 5 figure
Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach
It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris
Achieving minimum-error discrimination of an arbitrary set of laser-light pulses
Laser light is widely used for communication and sensing applications, so the
optimal discrimination of coherent states--the quantum states of light emitted
by a laser--has immense practical importance. However, quantum mechanics
imposes a fundamental limit on how well different coher- ent states can be
distinguished, even with perfect detectors, and limits such discrimination to
have a finite minimum probability of error. While conventional optical
receivers lead to error rates well above this fundamental limit, Dolinar found
an explicit receiver design involving optical feedback and photon counting that
can achieve the minimum probability of error for discriminating any two given
coherent states. The generalization of this construction to larger sets of
coherent states has proven to be challenging, evidencing that there may be a
limitation inherent to a linear-optics-based adaptive measurement strategy. In
this Letter, we show how to achieve optimal discrimination of any set of
coherent states using a resource-efficient quantum computer. Our construction
leverages a recent result on discriminating multi-copy quantum hypotheses
(arXiv:1201.6625) and properties of coherent states. Furthermore, our
construction is reusable, composable, and applicable to designing
quantum-limited processing of coherent-state signals to optimize any metric of
choice. As illustrative examples, we analyze the performance of discriminating
a ternary alphabet, and show how the quantum circuit of a receiver designed to
discriminate a binary alphabet can be reused in discriminating multimode
hypotheses. Finally, we show our result can be used to achieve the quantum
limit on the rate of classical information transmission on a lossy optical
channel, which is known to exceed the Shannon rate of all conventional optical
receivers.Comment: 9 pages, 2 figures; v2 Minor correction
Random graph model with power-law distributed triangle subgraphs
Clustering is well-known to play a prominent role in the description and
understanding of complex networks, and a large spectrum of tools and ideas have
been introduced to this end. In particular, it has been recognized that the
abundance of small subgraphs is important. Here, we study the arrangement of
triangles in a model for scale-free random graphs and determine the asymptotic
behavior of the clustering coefficient, the average number of triangles, as
well as the number of triangles attached to the vertex of maximum degree. We
prove that triangles are power-law distributed among vertices and characterized
by both vertex and edge coagulation when the degree exponent satisfies
; furthermore, a finite density of triangles appears as
.Comment: 4 pages, 2 figure; v2: major conceptual change
Quantum pump driven fermionic Mach-Zehnder interferometer
We have investigated the characteristics of the currents in a pump-driven
fermionic Mach-Zehnder interferometer. The system is implemented in a conductor
in the quantum Hall regime, with the two interferometer arms enclosing an
Aharonov-Bohm flux . Two quantum point contacts with transparency
modulated periodically in time drive the current and act as beam-splitters. The
current has a flux dependent part as well as a flux independent
part . Both current parts show oscillations as a function of frequency
on the two scales determined by the lengths of the interferometer arms. In the
non-adiabatic, high frequency regime oscillates with a constant
amplitude while the amplitude of the oscillations of increases
linearly with frequency. The flux independent part is insensitive to
temperature while the flux dependent part is exponentially
suppressed with increasing temperature. We also find that for low amplitude,
adiabatic pumping rectification effects are absent for semitransparent
beam-splitters. Inelastic dephasing is introduced by coupling one of the
interferometer arms to a voltage probe. For a long charge relaxation time of
the voltage probe, giving a constant probe potential, and the part
of flowing in the arm connected to the probe are suppressed with
increased coupling to the probe. For a short relaxation time, with the
potential of the probe adjusting instantaneously to give zero time dependent
current at the probe, only is suppressed by the coupling to the
probe.Comment: 10 pages, 4 figure
Two-stage Kondo effect in side-coupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis
We study numerically and analytically the dynamical (AC) conductance through
a two-dot system, where only one of the dots is coupled to the leads but it is
also side-coupled to the other dot through an antiferromagnetic exchange (RKKY)
interaction. In this case the RKKY interaction gives rise to a ``two-stage
Kondo effect'' where the two spins are screened by two consecutive Kondo
effects. We formulate a renormalized scaling theory that captures remarkably
well the cross-over from the strongly conductive correlated regime to the low
temperature low conductance state. Our analytical formulas agree well with our
numerical renormalization group results. The frequency dependent current noise
spectrum is also discussed.Comment: 6 pages, 7 figure
Ground-simulation investigations of VTOL airworthiness criteria for terminal-area operations
Several ground-based simulation experiments undertaken to investigate concerns related to tilt-rotor aircraft airworthiness were conducted. The experiments were conducted on the National Aeronautics and Space Administration (NASA) Ames Research Center's Vertical Motion Simulator, which permits simulation of a wide variety of aircraft with a high degree of fidelity of motion cueing. Variations in conversion/deceleration profile, type of augmentation or automation, level of display assistance, and meteorological conditions were considered in the course of the experiments. Certification pilots from the Federal Aviation Administration (FAA) and the Civil Aviation Authority (CAA) participated, in addition to NASA research pilots. The setup of these experiments on the simulator is summarized, and some of the results highlighted
Determining the phonon density of states from specific heat measurements via maximum entropy methods
The maximum entropy and reverse Monte Carlo methods are applied to the computation of the phonon density of states (DOS) from heat capacity data. The approach is introduced and the formalism is described. Simulated data are used to test the method, and its sensitivity to noise. Heat capacity measurements from diamond are used to demonstrate the use of the method with experimental data. Comparison between maximum entropy and reverse Monte Carlo results shows that the form of the entropy used here is correct, and that results are stable and reliable. Major features of the DOS are picked out, and acoustic and optical phonons can be treated with the same approach. The treatment set out in this paper provides a cost-effective and reliable method for studies of the phonon properties of materials
- …