43,791 research outputs found

    Diffusivity in turbulent fluid containing two dominant scales, and compressible shear layer according to a kinetic theory

    Get PDF
    The solution of the two nonequilibrium-degree kinetic equation was first determined for the effective length scale and turbulence energy for a spatially homogeneous turbulence field with two characteristic length scales, where the source for one family of eddies exists. This solution was applied to the evaluation of the eddy diffusivity in the combustion chamber of an internal combustion engine. The result was compared with another existing solution. This was carried out to demonstrate the feasibility of obtaining an effective length-scale equation within the context of the kinetic theory. A formulation and partial solution of the compressible plane shear layer are also presented

    A turbulence description of couette flow

    Get PDF
    Statistical mechanics for wall shear turbulence in couette flow based on Brownian motion and comparison with stochastic theory based on Navier-Stokes equatio

    Chemical reaction in a turbulent flow field with uniform velocity gradient

    Get PDF
    Chemical reactions in turbulent flow fields with uniform velocity gradien

    An analysis of turbulent diffusion flame in axisymmetric jet

    Get PDF
    The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed

    Statistical physics of cerebral embolization leading to stroke

    Full text link
    We discuss the physics of embolic stroke using a minimal model of emboli moving through the cerebral arteries. Our model of the blood flow network consists of a bifurcating tree, into which we introduce particles (emboli) that halt flow on reaching a node of similar size. Flow is weighted away from blocked arteries, inducing an effective interaction between emboli. We justify the form of the flow weighting using a steady flow (Poiseuille) analysis and a more complicated nonlinear analysis. We discuss free flowing and heavily congested limits and examine the transition from free flow to congestion using numerics. The correlation time is found to increase significantly at a critical value, and a finite size scaling is carried out. An order parameter for non-equilibrium critical behavior is identified as the overlap of blockages' flow shadows. Our work shows embolic stroke to be a feature of the cerebral blood flow network on the verge of a phase transition.Comment: 11 pages, 11 figures. Major rewrite including improved justification of the model and a finite size scalin

    Analytical and experimental study of two concentric cylinders coupled by a fluid gap

    Get PDF
    From a structural point of view a liquid coolant type nuclear reactor consists of a heavy steel vessel containing the core and related mechanical components and filled with a hot fluid. This vessel is protected from the severe environment of the core by a shielding structure, the thermal liner, which is usually a relatively thin steel cylinder concentric with the reactor vessel and separated from it by a gap filled with the coolant fluid. This arrangement leads to a potential vibration problem if the fundamental frequency, or one of the higher natural vibration frequencies, of this liner system is close to the frequency of some vibration source present in the reactor vessel. The shell rigidly clamped at its base and free at the top was investigated since it is a better description of the conditions encountered in typical reactor designs

    Effects of a Novel Dental Gel on Plaque and Gingivitis: A Comparative Study.

    Get PDF
    ObjectivesThe goal of this prospective, randomized, controlled, double-blinded study was to evaluate the effects of a novel dental gel on plaque and gingival health. The dental gel was designed to (1) break up and prevent re-accumulation of microbial biofilm, and (2) inhibit metal mediated inflammation.Materials and methodsTwenty-five subjects with moderate gingival inflammation (Löe and Silness Gingival Index ≥2) and pocket depths <4 were randomly assigned to brush twice daily for 21 days with the test or the control dental gel. On Days 0, 7, 14 and 21, plaque levels (Quigley-Hein, Turesky Modification Plaque Index), gingival inflammation (Löe and Silness Gingival Index) and gingival bleeding (modified Sulcus Bleeding Index) were determined by one blinded, investigator using a pressure sensitive probe.ResultsAfter 3 weeks, all 3 clinical indices were significantly improved in both groups (P<0.05) and significantly lower in the test group (P<0.05).ConclusionThe novel dental gel formulation was provided effective plaque control and reduced gingival inflammation.Clinical relevanceA novel dentifrice formulation may be an effective tool for plaque removal and maintaining gingival health

    New Predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    Full text link
    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at O(p4){\cal O}(p^4) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.Comment: 15 pages, 3 figure
    corecore