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ABSTRACT

A simplified statistical theory for turbulent shear flows previously
initiated by the present author is developed until it is completely self-
containing in the flow region where the turbulence Reynolds number is suf-
ficiently large. The theory, therefore, applies in the region outside of
the lamipar sublayers. The homologous flow and concentration fields are
first analyzed for the chemically frozen case. From the analyses, the
relationships between the mean velocity and concentration gradients, and
the Reynolds stress, turbulence energy, turbulent transport of chemical
species, and the mean square fluctuation of the species concentration are
established. The comparison of the present reﬁults with the available ex-
perimental data is made, which shows a satisfactory agreement, The non-
equilibrium chemical reaction was found to create an inhomogeneity in the
concentration field which, among other things, causes the mean square fluc-
tuation to vary nonuniformly with respect to the Damkohler number and the

flow region.



I. INTRODUCTION

The conventional phenomenological approaches to the chemically reacting
turbulent shear flow problems have been developed to near their maximum ca-
pacities. These approaches have been very useful in analyzing the nonequi- .
1ibrium chemical reactions in various turbulent flow fields,in the absence
of a better tractable method, A few of the examples are those given in Refs,
1-4.

It is known, however, that the éorrect description of a nonequifibrium
chemical reaction in a turbulent flow field is outside the inherent limita-
tions of the conventional phenomenological theories, Basically, it is be~
cause the rate of the chemical reaction in a turbulent flow field is coupled
with the turbulent fluctuations so that the average chemical reaction rate
at. a given point is not equal to the rate based on the averaged properties,
such as the averaged chemical species concentrations.

5 was developed by the present author in

A simplified statistical theory
which the most important statistical quantities, such as the turbulent trans-
port tensor, turbulence energy, and the average chemical reaction rate, were
described in a tractable manner. The comparison of this theory with the oth-
er available theories,as well as a brief state—of-thé-art review of the con-
ventional phenomenological and the classical statistical theories in relation
to the present theory, was included in that work.

In addition to the development of the general theory, the turbulent
Couette flow of a chemically inert, single component fluid was analyzed in
Ref. 5. The theory as applied to a chemically inert single component flow

was shown to be self-containing up to the dissipation function. The experi-

mentally available dissipation function was employed in the solution of the



Couette flow., A simple expression for the dissipation function, however,
was deriveds subsequentiy which was based on the "universal equilibrium"
concept for high turbulence Reynolds numbers, This expression was shown to
approximate the experimentally available dissipation functions closely for
the Couette, pipe, and boundary layer flows, and the free jets, It was sug-

gested®

that an incorporation of this dissipation concept into the general
theory would make the theory completely self-containing for the chemically
inert, single component flows.

In the present paper, the simplified statistical theory developed pre-

5 will first be made completely se1f~cbnta1ning for the turbulent

viously
flows of binary mixture of chemically reacting fluids when the molecular
Prandtl and Schmidt numbers are of order one, and when there 1is no laminar
sublayer, The dissipation function derived from the "universal equilibrium”
concept is valid only in the region where the turbulence Reynolds number is
sufficiently large. Therefore, the self-contained theory to be developed
herein is not valid in the laminar sublayers. As it was the case with the
previous work,5 we shall consider that the flow is incompressible.

The theory will be employed to analyze the following set of problems
with no Taminar sublayers.

We shall first analyze the stationary homogenous turbulence field with
a uniform velocity gradfent (homologous flow field). We shall establish the
relationships between the mean velocity gradient, the Reynolds stress, and
the turbulence energy. These results will be compared with the available
experimental data obtained behind a nonuniform gr‘id,6 and at the center of

a Couette f1ow7’8’9

where the mean velocity gradient is uniform,
We shall then superimpose a uniform mean concentration gradient of a

chemical species onto the homologous turbulence field in the absence of



chemical reactions. In analogy to the homologous flow field, we shall call the
homogeneous concentration field with a uniform mean-concentration gradient a
homologous concentration field. The relationships betwaen tﬁe mean velocity
and concentration gradients, mass transport, and the mean square fluctuation
of the chemical species will be established. A qualitative comparison between
the present results and the existing analyseslo’]i based on the classical sta-
tistical turbulence theories will be made. It is pointed out here at the out-
set that no quantitative comparison with the existing theoretical studies is
possible because the momentum and mass (or heat) transports, as well as the
other statistical properties, for the high Reynolds number, self-sustaining,
stationary homologous field have never been actually éomputed in ihe previous
studies.

| The above described turbu?ent flow'fie1ds with the uniform velocity and
concentration (or temperature) gradients are completely homogeneous so that
there is neither a characteristic length nor a reference property. A chemical
reaction, on the other hand, is a function of the real time and the absolute
values of the properties. One must, therefore, define a reference Tength and
the reference properties of the flow field before a chemical reaction can be
studied, |

We shall, therefore, consider a hypothetical mixing layer of finite width

formed by two parallel, isotropic streams with the two different mean values
of the velocity and the chemical species concentration, The flow and the
species concentration in the mixing layer are made homologous in the absence
of chemical vreaction by assuming that the two bounding planes of the layer
are completely pervious to momentum and mass. Then, the inhomogenieties of
the concentration field caused by a nenequi1ibr1§m chemical reaction will be

analyzed.
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IT. FORMULATION

This section will begin with a brief discussion of the general theory de-
rived previous?yS. This theory will then be developed until it is completely
self-containing for the turbulent flow fields with no mean pressure gradients

and laminar sublayers, but containing a chemically reactive species.

General Theory

A physical turbulence field consists of all size eddies which are super-
imposed on each other and intermingled together. The fluctuating property
of a fluid element cbserved at a point is a manifestation of the combined in-
fluence of the various size eddies of which the fluid element is a part.
Another description of the turbulence field is that it is comprised of an
infinite number (continuous spectrum) of degrees of freedom. The influences
of these degrees of freedom on a fluid element at a point are determined
through the spectrum analyses of the pertinent correlation functions derived
from the Navier-Stokes equation,

The existing spectrum analyses of such as the two-point velocity cor-

12,13 have established the following information of the dy-

relation function
namics of turbulence when the turbulence Reynolds number is sufficiently
large. The turbulence energy and the other observable statistical properties
caused by the turbulent fluctuation, such as the Reynolds stress, are pre-
dominantly due to the Tow-wave-number degrees of freedom. The high wave-
number degrees of freedom are in equilibrium. The low wave number region of

the spectrum is statistically separated from the high wave number region a-

cross an inertial subrange. The characteristic times of the low wave numbers



(Tow-wave-number degrees of ¥reedom) are much longer than and separated from -
those of the high wave numbers,

5 the turbulence field described above, which

In the simplified theory,
consists of a spectrum of degrees of freedom, is replaced by a nonequilibrium
degree of freedom representing the low-wave number region of the spectrum and
the high-wave number degrees of freedom which are always in equilibrium, The
turbulence energy and the other important statistical properties caused
by the fluctuation are considered to be due to the nonequilibrium degree of
freedom only. The high-wave-number equilibrium degrees of freedom are con-
sidered to cause the evolution of the nonequilibrium degree of freedom toward
an equilibrium state through their interactions with the nonequilibrium degree
of freedom, and to dissipate the turbulence energy contained in this degree
of freedom,

The model of the turbulence field described in the preceding paragraph
satisfies’preciseiy the generalized definition of the Brownian motion (see

14 the evolution of

for instance Prigogine74). The Brownian motion describes
a few degrees of freedom of a large system towards statistical equilibrium
in situations in which all other degrees of freedom remain in equilibrium,
Before we begin the formulation of the present problem, according to the
turbulence model after the Brownian motion, we shall briefly discuss the
basic governing equation of the Brownian motion itself.
A rigorous statistical treatment of the Brownian motion, in particular
the evolution of one degree of freedom representing an anharmonic oscillator

inAso?fd, was carried out by PrigogineYd. A comparison of the results of the

rigorous treatments and the classical Langevin's stochastic equations149}5

is given therein. The two are shown to be identical in certain "weakly coupled”



cases, whereas they are found to be only approximately the same in other cases.
The Langevin's stochastic equation is much simpler and is more amenable to
solution than the equations resulting from the vrigorous treatment. Further-
more, the Langevin's equation for the various simple cases has been so?ved]5
and the resuTts have been shown to be essentially correct in comparison with

the available experimental data.

Now returning to the present problem, the starting point of the present

turbulence theory described earlier is the Langevin's stochastic equation,15
dui N -
Te- = ~B(0U; + Aj(6) + K (U) ()

where the index 1 denotes the first order Cartesian tensor. In view of the
present turbulence model and the general discussion of the Brownian motion
given before, the meanings of the various terms of Eq. (1) are as follows,
The term on the left denotes the time rate of evolution (decay) of the in-
stantaneous absolute velocity Uy at a point X, where ug is due to the non-
equilibrium degrée of freedom répresenting the Tow wave numbers of the tur-
bulence spectrum, The first term on the fight represents the decay of U,
due to the long preferred memories of the low-wave-number nonequilibrium
degree of freedom, whereas the second term denotes that due to the fast ran-
dom fluctuations of the equilibrium degrees of freedom. In Eq. (1),'Ui is
Uy = <uy> where the symbol < > denotes the appropriate ensemble average. The
function g(X) is the characteristic decay rate of the nonequilibrium degree
of freedom which will be definedmore precisely later. Finally, Ki is the

body force applied to the fluid element due to the molecular viscosity of

the fluid, which will lead to the eventual dissipation of the turbulence energy.



Equation (1) thus describes the evolution of the nonequilibrium degree
of freedom, Since it has been assumed in the present turbulence model that
all the observable statistical properties are entirely due to this nonequilibrium
degree of freedom, the mean velocity and the turbulence energy, for instance,
are simply given by <Uy> and <ukuk> respectively.

The Fokka~Planck equation appropriate for the present turbulent flow pro-
blems was derived in the previous paper5 which is written below for the cases

wherein there are no mean pressure gradients and laminar sublayers.

J

+u' +
at Jaxj auj auj
' } U > o ae(1)
1 (1) UK a2F (a)
=8 I (F Uj) " TR anaU;] YRk ME (2)

In the above equation, t is time, and F(P), where P 2 0, is the P-th order

distribution function of the chemical species defined by,
FPYad = WP OGUL ) FR,E)du | (3)

where du = du dv dw with u, v, and w without indices denoting the x, y, and

z Cartesian components of the velocity respective?y; The symbol n represents
the mass fraction of the chemical species. The function f is the distribu-
tion function of the fluid elements which expresses the occupation probability

of a fluid element in the phase cell dx du. Equation (3) gives, for instance,
JF(P)dK = <np> (4)

where the symbol < > is used henceforth to denote the moment,



Q> = JQ? a5 (5)

The symbol y denotes the chemical reaction rate constant, and the instantaneous
chemical reaction rate in Eq. (2) is considered to be given by yn“c The term,

M, represents the molecular diffusion rate of the chemical species between the

fluid element and the surroundings. The expression, D%§£§§; f; where D is

the molecular diffusivity, was employed for M in the4previous derivations.
This term as well as the molecular dissipation term kj will be re-formulated

in the following.

Dissipative Terms

Equation (2) as was formulated in Ref, 5 contains two unknown character-
istic times. One is the characteristic time of the nonequilibrium degree of
freedom defining 8, and the other is the characteristic time of,the‘equi1ibrium
degrees of freedom which determines.kj and M,

The characteristic time of the nonequilibrium degree of freedom, 1/8,
which represents the low wave numbers or the larger eddies, is given as (see

Ref, 5).
1/g = ?J\/-:Ukukﬁ'é (6)

where A is the characteristic length of the larger eddies. Following the

suggestion given at the end of Ref. 5, we let,

5u
T4 b

U Y

for the two dimensional flows wherein the only important velocity gradient

3
is 5?2 . In Eq. (7), the subscript o denotes the averaged value, thus
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Ug = <u>, and L is the characteristic length of the flow field such as the
half-width of the Couette flow and the boundary layer thickness. The sub-
script = denotes the referenée value, and » is the characteristic length of
the larger eddies in the Timit of small Bu /3y,

The characteristic time of the equilibrium degrees of freedom, unlike
that of the nonequilibrium degree of freedom, is not closely related to the
characteristics of the flow field which generate the‘1arger eddies. Hence,
it cannot be defined in a simple manner as Eq. (7). The entire Brownian
turbulence model, however, which has been formulated herein is based on the
known dynamics]2*13 of the turbulence fields described in the second para- |
graph of the preceding subsection. The dynamics of turbulence, when pushed
to its 1imit, leads to the "universal equilibrium" theory which states
that the rate of dissipative processes which are due to the high wave num-
bers (equi]ibrium degrees of freedom) 4is in fact controlled by the charac-
teristic time of the low wave nuhberg (nonequilibrium degree of freedom);
The equilibrium degrees of freedom, in the present model, if we dccept the
"universal equilibrium" theory, dissipate the turbulence energy and the che-
mical species fluctuation only as fast as they receive'thém from the non-
equilibrium degree of freedom., The nonequilibrium degree of freedom, there-
fore, is the rate-controlling degree of freedom in the dissipative processes.

We shall consider that this universal-equilibrium concept of dissipation
holds for the homologous flow field to be studied herein.

We now express the dissipative terms Kj and M of Eq. (2) in terms of
the characteristic time, 1/8, when the molecular Prandt] and Schmidt numbers

are of order onhe, as

(8)
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Governing Fokka-Planck Equations

With the use of Equations (3), (6), (7), and (8), Eq. (2) gives the
following two self-contained equations governing the functions f and n
respectively. The equation for f is derived from Eg. (2) by setting n = 1

and by discarding the chemical reaction term,

of 3f >f
T Y, e d e
at J sxj auj
U, U, > 12 au <U U, >
. kk L 0 ) k“k™ a°f ,
= (U Hi—wy >{% sy (FUy) - =2 aU.aU.} (9)
0 J J J
anf anf , anf
PO B | TR i, St
ot J agj auj
<, U, >1/2 Y U U,> o
U gy 2 S (nfug) - e S
O J J J
<Y U, >17/2 U
Ggp k“k L 0
+yn f - T (1 '*'D;;é‘ym Y(n - nO) f (10)

Equations (9) and (10) are integro-differential eduations since <U U, >,
Uy and o represent the integration with respect to u, v, and w. These
equations will be solved by an approximate moment method for the flow prob-
lem of the present interest subsequently. As a preparation of the solution,
we derive the generalized moment equations in the following.

Generalized Moment Equations

o
We let Q be a general function of U, X, and t. Then as we multiply
Egs. (9) and (10) by Q and as we integrate them with respect to dU = dudvdy,

there result after some manipulation,
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9 e 3 it . D
»«—«JQde»j,dtdewLaxkj(uok“"U)Qde

vy

. u
- 30 30 _Om el
J (g *+ Yy M, fdU + T {ugy * Up) T, fdu

od

,U, 42 o { VU >
Y, L %Y, j 00 oor . kok” {aq of
- 42 0 ) 2|y, 28 FQU + du (1)
o 3 kguk 3 BUm 3Um

3 > 3 > 3 P -
= jonf du - Jn 30 4 + e J(“ok +U,) Qnf dU

, X y X
- j(uok + Uk) g§~~ nf du + [~8 { ¥ Uk) w~93% nf du
k

Xy
<UkUk>1/2 > U rag anf
T - N (1 + w e j nde + g fBU BU dU
<U, U >1/2 ju .
+ YJQnafdG - §x£“‘ 0 + %-~5§9-)[(n - no) 0fduy (12)
o

As it was done in reference 5, one can readily show that the various
particular moment equations derived from Egs. (11) and (12) are essentially
the same as the corresponding moment equations derived from the Navier-
Stokes and the species conservation equations in the classical statistical

turbulence stud1es13

ITI. FLOW FIELD
The turbulent flow field with uniform mean velocity gradient (homolo-
gous flow field) will be analyzed in this section(see Fig. 1).
Solution
Equation (9) will be solved by the moment method, after Mott=Smith16,

17

and Liu and Lees'’, as was done in the previous turbulence an]aysiss. For

the details of this moment method, the readers are referred to the references

16 and 17,
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We first approximate the distribution function f by the two half-

Maxwellians as,

f = fl + f2 (13)
where,
1 (u~u01)2 + Y242
(3 T E]) 1
(14)
A 1 (u-uoz)2 + V22

and fy and~f2 are considered to be zero for V< 0 and V> 0 fespective]y.
The present moment method5 of solution entails the determination of the four
unknown functions E1(y), Ez(y), uol(y), and uoz(y) by substituting the
“assumed form of the distributions function, Egs. (13),into a set of four
particular moment equations to be deduced from Eq. (11) which. is the generalized
moment equation of fq. (9). By approximating the distribution function by
Eq. (13), we are conceptua}]ylgimp1ying that the flow field is a shear layer
of infinite extent formed betweén two isotropic turbulent parallel streams
with the turbulence energies of-Ei(ww) and Eg(w) respectively, and with the
mean velocities of uol(-w) and uoz(w)-respectively.

We notice the fact that Vo = Wy = %f~= %§~= %§-= 0 in a steady state
(stationary) homologous flow field. Then, as we successively let Q = 1,
Q=U,Q=UV, and Q = UkUk = U2 + V2 + W2 in Eq. (11), there result the

following equations.

d W
ayv[fv dy = 0 (15)

d 0.
ap~JfUV dy = 0 (16)
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‘dU >
d 2 ““0
ay‘JfUV dll + [a§~} [fv2 a

J

2 L duo 2 ) o ok >
E e - Jrac -~ 2 .

: (1 + i @ ) [f(U + V2 + W2)dU {ffuv du } (17)
d 9 2 2Yd0 duy n
ay-JfV(U + V2 4 W2)dU + 2 a;*‘Jf“V dU

du 3/2 |

. .1 Lo R
AU ){I £(U2 + V2 + W2)dl } (18)

When Egs. (13) and (14) are substituted in Eq. (15) for f, there results
for the homologous flow, where Vo © 0,
E, = E, = E ' (19)
Equations (16), (17) and (18) become with the use of Eqs, (13), (14),

and (19) as, after some manipulation and nondimensionalization,

ve = Cy (20)
1/2
P2 2
: - (we){- + 9 )
g.i: ..‘2 % 41 (21)
dY A yg2 6)4 . {wz 62]1/2
(jj) + (;‘ (v ).7f + %)
] {al{)i+ 82}3/2
9 _
&7 e a1 #2)
LA ¥ (W___*. 92) 3/2
(GW)1/2 4
u u /2
whey-e l"ﬁ”’g“%‘ﬁ:‘"“—g*%s g = 5 .
0> 0
(23)
+ U
b = -2 —02, Y= y/L,
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and C] is a constant of integration of Eq. (16).

Equations (20), (21), and (22) comprise the governing equations for the
three functions of ¥, 8, and ¢, which together describe the flow field.

The function ¢ is related to the mean velocity uj through Egs. (13)

and (23) as,

u
o _ 1 f > b
Los 2o tfudl o= % (24)
Uge  Yow 2
1 do . Yo Yo
In a homologous flow field, therefore, i VAl A is constant. Hence,

for a given mean velocity gradient, %—%%-, Eqs. (21) and (22) constitute

two coupled algebraic equations which would determine the unknowns ¢ and 6
which should be also constants, These values of ¢ and 6 will then give the
constant Cy, which determines the Reynolds stress from Eq. (20), thus
completely satisfying the three equations, Eqs. (20), (21), and (22).

For a given constant value of d¢/dY, Egs. (21) and (22) can be readily

solved to give: .

1/2
e Ty desay
b= "[6’ 0-g J © rvaav (25)
and ]‘ a0
sy desay
0 {31/2x ©) 7+ derav (26)

Equation (20) then gives, with the use of Eqs. (13), (25), and (26),

C
W w%m_Jf W dU = walij
w, ul, (6m)t/ 2
_ w372 do/dY ?
e Vel @ é*“:“awa“) (27)

Solution of Fgs. (20), (21). and (22) is now complete. The turbulence

energy is readily obtained from the solution as,
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o A
= Jff‘(u2 V2 o+ W) dU = o 02
u2 u?
[a1=d] [o1a
1 dg/dY)?
=3 (- §{2‘178678Y} (28)

Discussion of the results and the comparison with the available experimental
data will follow.

Discussion of the Flow Field

Equations (25) through (28) show that the relationship between the mean
veiocity gradient and <UV>/ugm, and <UKUk>/u§oa depend on the characgeristic
length ratio A/L. As it was defined earlier, A is the chéracteristic Tength
of the nonequilibrium degree of freedom (large eddies) in the limit of the
small mean velocity gradient, whereas L is theAcharacteristic length of the
flow field.

In the homogeneous field generated by two parallel plates, that is at
the core region of a Couette flow, A and L are fairly well defined,and we let
k/L = 1 where L is the half-width of the Couette flow field. The reference
velocity, Ugeos is the velocity at the center of the Couette flow. The
solid and the broken 1ines in Fig. 2 show the present solution, Egqs. (25)
through (28), for AL =

7,8

There are two published experimental works on Couette flow which

give the re]ationship between the mean velocity gradient at the center of
the flow f1eld and the surface shear which ideally should be equal to <UV»

at the center These experfmenta1 results are shown in Fig. 2.

8 7.

Reichardt” showed only two experimental points, whereas Robertson
gave a rather large number of data.

Reichardt8 employed two parallel belts running in the opposite direc-
tions.

In the Robertson work7, the flow field was generated by using a belt
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parallel to a fixed wall. Robertson noted that the velocity at the center,
Upgeor WAS less than one half of the belt velocity (uo)beit’ due to the side-
wall effects (three dimensional effects). By employing a blower at the
inlet to the flow region, Uy Was brought up to half of the belt velocity.
Figure 2, therefore, shows two sets of Robertson's data for the two dif-
ferent values of “Om/(“o)be1t' There is substantial scatter in the data.

758 £or the detailed

The readers are referred to the original papers
description of the experiments as well as the analyses of the data.

As to the comparison of the theoretical results with the experimental
data, Fig. 2 shows that the present theory predicts the correct order and
variation,with respect to duo/dyiof <UV>. Beyond that, we may say that
the present theory seems to agree with the Reifchardt's results much more
closely than the Robertson's data.

The experimental results of a homologous flow field generated by a non-
uniformly spaced grid located in a channel are given by Roseﬁ. Here, the
analysis of the flow field is much more complicated than that of the core
region of the Couette flow. In the Couette flow, A/L is clearly one since
there is only one characteristic length of the flow configuration. In the

6, the characteristic length and velocity governing the

problem of Rose
overall flow, L and u,_, are, as were the case with the Couette flow, the
half-width of the channel and the center-line velocity, respectively. How-
ever, the characteristic length,A, is governed by both the grid spacings
and the chénnel Qidth, In a flow behind a uniform gridywithout the con-
fining walls, A is equal to the grid spacing. In the Rose's work, the grid
spacing varies across the channel, and also the effect of the wall is in-
creasingly felt by the eddies as the flow developes through the channel.
Even if we consider that the effect of the walls on the eddies is neg-

6

Tigible in the flow region where the measurements™ were taken, the value of



18

A at a given point is affected by all different values of the nonuniform
spacings of the grid. The fact that the measured values of <UkUk> and <UV>
were relatively uniform across the channel at the regions sufficiently
downstream of the grid indicates that all size eddies produced by the various
grid‘spacings were sufficiently mixed in these regions, producing a uniform
value of ». Therefore, for these regions, we take ) equal to the maximum
value of the grid spacing Dutside the wall boundary layer, where the inean
velocity gradient is uniform. This value according to the discm‘ption6 of
the grid is about 0.17L.

By using A/ = 0.17, the present theory, Eqs. (25) through (28}, gives

AV>/uZ, = -4.6 x 107° and < U,>/uZ_ = 2.5 x 107"

for the only experimental-
ly employed vatue® of (L/uoqxdug/dy) = (,135. Fogrfame value of the mean
velocity gradient, Rose measured <UV>/u§oo of between about -3.5 X 107° and
~4.2 x 10-5, and <UkUk>/u§0° of about 3 x 1074, Therefore, the agreement
between the present theory and Rose's experimental data is satisfactory,
Analysis of the flow field is now completed. We shall now study the

transport of chemical species with homologous flow field,

IV. HOMOGENEOUS SCALAR FIELD
VWe shall study the transport and fluctuation of a chemical species
in the absence of chemical reaction (chemically frozen case). This case
is equivalent to the heat transfer problem if we consider the species
mass fraction n to represent the temperature instead. The chemically
reacting case will be analyzed in the subsequent section,

Analysis of Concentration Field

The mixing layer for n is homogeneous only if dno/dY is uniform and

the chemical reaction is frozen.
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We first seek the soTution of Eq. (10) for n subject to the constant

dno/dy and frozen chemistry. Consistent with the moment method we employed

for the flow field, we shall obtain this solution by selving an appropriate

number of particular moment equations to be derived from Eq. (12) which is

the generalized moment equation of Eq. (10).

In order to be consistent with Eq. (T3), we first express n by,

n(y.0) = n

where, >
n] = n](Y9U)

-

nz = nz(yau)

1t N, (29)

for V> 0
(30)
for V< 0

and ny and n, are zero for V < 0 and V > 0 respectively. With the expression

of Eq. (29), the transport and the

<NV> = <nVs = de {dV Idw ny Vf]
P o] ‘G - O
<N?s> = <p2> - ng
[s+] Loy o 2 <0
= JdU {dV jdw M f} + JdU
- “du jdv fc‘w ny jdu
-0 0 L =g

As it is seen from the solution of

the various statistical quantities

mean square fluctuation of n are given by,

e 0 o
+ {dU jdV jdw Ny sz

¢

- Q) . 00 e 017 (3.‘ )

0 P
2
[dv jdw n, f

fgv J:N ny f 4}2 (32)

ot OO =

2

the flow field, Eqs. (25) through (28),

caused by the fluctuations, such as <UV>

and <UkUk>, depend only on the mean velocity gradient and not on the mean

ve1o¢ity itself in a homologous flow field. Otherwise, since the mean velo-

city varies linearly with y, the statistical properties such as <UV>will vary
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with y and the flow field will no longer be homologous.

Similarly, in a homogeneous concentration field of infinite extent with
a constant dno/dy, the statistical quéntities caused by the fluctuations,
such as <NV> and <N2>, should be uniform. A study of Eq. (12) in the Tight
of Egqs. (29) and (30) shows that ny and n, must be independent of ﬁ, other
than they.depend on the direction of V as defined by Eq. (30), in order that
the concentration field may be homogeneous. This point will be made more
clear later. | ‘

We shall now derive two particular moment equations from Eq. (12)'1n or-
der to determine the functions nx(y) and nz(y). Although the present section
is copcerned only with the chemically frozen case, y = 0, we shall first de-
rive the equations for the general v for the later use. As we successively
put @ = 1 and Q = V into Eq. (12), with Vo = W = (3/5t) = (8/ax) =(3/3z) = 0,

0
there result the equations,

&l

{ > ) ->
JVnt U = y J{n“ £ du | (33)

Uy, > du
d [yo > UKk L 0 >
E&—JV n fdu=-3 2)\“(1""&—'0;:3'9—*)[\]“{:(1”

+ ¥ jv n® f d0 ' (34)

Above two equations become, with the aid of Egs. (13) and (29), and

after a nondimensionalization,

f2 .
%\7 ((1'1 - a2) =T (6,21231 (aglz + u%) (35)

1/ :
G fog *op) = - § ) 2(%){ ; *82)W (ag=07)

+ 7 (= '2'3# (o0f - a3) (36)
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where -

op B M/ s wp = N/, T = e Ju (37)

Qoo

Now we consider the frozen chemistry of T = 0,

For the present case wherein ny and h, are functions of y only, we have,

n
d(z>) .
v o2 = n] gv-jn fdu-= §-%Y~(a] + az) (38)

Qe

Therefore, for a given uniform mean concentration gradient, Egs. (35) and

(36) can be readily solved, and there results,

{dno/naw
A QU N i\ S (39)
A beT Y -

(7

. 8
ST R

The turbulent transport and the mean square fluctuation are obtained from

Eas. (25), (26), (31), (32), and (39), as,

<NV> 1 6
hOquw (QSw)l/2

(aq = ap) ()

= A . “)3/2 ()% (do/dY) ding/ng,,)

- . (40)
N2> 1 5
;z = oy - o)
Do:»
| 2fd(n_/n__)]"
_ 87 Ty g A2 1 0’ o=
=37 (1 - () [2 ¥ dri:/dY} [dv } (41)

Discussion of Homogeneous Concentration Field

Above solutions show that the turbulent transport, in a homologous flow
and concentration field, is porportional to the mean concentration gradient,
whereas the mean square fluctuation varies with the square of the gradient.

Also, the increasing mean velocity gradient, for d¢/dY < 2, increases the



22

transport whereas it decreases the mean square fluctuation.

From the results given in Eqs. (27) and (40}, one may readly derive
the ratio of the turbulent mass (or heat) to momentum diffusivities,
sD/am, where these diffusivities are defined in the conventional manner
by the equations,

dn

N> = -ep 3-5,9
(42)
duo
<UYy> = “tm dy
The ratio simply becomes
epley, = 473 (43)

The transient, decaying, low Reynolds number turbulence field with thé
uniform velocity and>temperature gradients was studies by Deisslerlo’]1. As
it was mentioned in section 1, the problems considered by Deissler, as well
as the similar problems considered by others, are basically different from
the present one, and no direct comparison can be made. However, a quali-

" showed that a

tative comparison can be made of the ratio aD/am‘ Deissler
large mean velocity gradient has the effect on the turbulence Specfrum some-
what analogous to that of a large Reynolds number, and that the ratio eD/em
approaches'one from above as the velocity gradient is continuously increased,

when the molecular Prandtl number is order one. This is essentially consis-
tent with present ratio given in Eq. (43).

We have now completed the analysis of the homogeneous concentration
field which jtself has no characteristic length. The ratio a/L in Egs. (40)
and (41) is arbitrary as it was in Eqs. (27) and (28). As we have seen in
section III, these characteristic lengths become defined only as we consider

a homologous flow and concentration field generated by a particular physical

configuration,
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’A concentration field with chemical reaction cannot be homogeneous
because a chemical reaction depends on the real time, Therefore, all the
characteristic Tengths must be defined a priori,

The inhomogeneous concentration field generated by a chemical reaction

will be considered in the next section.

V. CHEMICAL REACTIONS

As it was mentioned at the end of the preceding section, a characteristic
length must be'defined before a chemical reaction can be analyzed. We shall
in the following, first define a physical system such that the flow and scalar
fields are both homologous in the absence of a chemical reaction. The
solutions obtained in the preceding section, therefore, describe the flow and
chemically frozen concentration fields of this system. The effect of
chemical reaction on the scalar field will then by analyzed.

Chemically Frozen Field

In order to provide a characteristic length without creating laminar

sublayers, we consider the hypothetical homologous flow field of width L
19

created between two isotropic’” streams with the mean velocities u01(0)
and uoz(L) respectively, and with the equal turbulence energy of E. .The
flow is sketched in Fig. 3. We are assuming that the planes at 1 and 2
(see Fig; 3) are perfectly pervious to momentum and mass (slippery).

The solution of the flow field proceeds exactly as it did for the in-
finite homologous field of section III, and we obtain Eqs. (27) and (28)

with d¢/dY given in terms of the present boundary conditions, u_,(0) and

ol
Uyo(L), as,

11
3

R LR K RN (R TR AT S

1
™y
::!r"

Qe
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6) r 1/2
_ (de) I M LT (45)
¢“{a'?‘}¥+2u0m +i.6 )‘
where
b= Jup(l) - ug, (07, (46)

In the above solution, we set /L = 1. The U is an arbitrary reference
velocity, which we may set equal to u01(0) for convenience., Since thée planes
are s]ippefy, there are velocity slips at these planes, instead of laminar
sublayers, as seen from Eq. (45).

Now, we must prescribe the necessary conditions on n for the two iso-
tropic streams. Since the values of nat y = 0 and y = L may be still
functions of ‘ﬁ] 20, it is not sufficient just to prescribe values of <>,
There are infinitely many function of QG} which would give the same <>,

Physically, this means that the concentration field between the two
planes is dependent upon the fluctuations of n, as well as upon the averaged
values of n, in the two bounding streams,.

Again proceeding exactly as we have done for the infinite homologous
concentration field of section IV, we find that the boundary conditions on n
at y = 0 and y = L must be specified as constants in order to obtain a homo-
geneous field with a uniform dno/dy between the two planes. Therefore, in
the present problem, the constant values of u1(0) and az(l) are specified.
The solution of the scalar field is then, again, those given by Egs. (40) and

(41) with d(no/nOm)/dY given in terms of the present boundary conditions as,

d(n_/n_) /2

o ’%{LZF"?, Pk - ECRRR IR @)
dn_/n_ 1/2 . 1/2

e T a2 V@ (- rdar ¢ () (48)
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The homologous flow field and the chemically frozen, homologous concentration
field have now been described.

The condition that n must be constant in the two isotropic bounding
streams implies the following. Each fluid element of each stream must con-
tain exactly the same mass fraction of the chemical species, and therefore,
there must be no fluctuation of the specie521. In an usual isotropic stream
with a scalar quantity, say temperature, such as that generated by a uniformly
heated grid, there is a spectral distribution of the temperature field which
results in a fluctuation of the témperature, This is because the transfer of
the scalar quantity to the fluid elements at the grid is not uniform but is
related to the generation of the turbulence itself. If, on the other hand,

a chemical species {(or heat) is uniformiay mixed into a fluid in, say, a
settling chamber, and if the resulting uniform mixture is then allowed to
become turbulent by passing through a grid, then the resulting isotropic stream
will have a constant n. ( |

The n-fluctuations given by Eqs. (40) and (41) are caused by the mixing
of the two streams with constant but different n's in the mixing layer between
the two planes.

When n in the two isotropic bounding streams are made functions of IG],
the results show that the scalar field between the two planes is inhomogeneous.
Quantities'such as <NV> and <N%> are found to be different from the present
results, Eqs. (40) and (41}, and they vary across the mixing layer. The case
of the mixing layers formed by two streams with the initial n-fluctuations
will be considered in a future paper.

Now, we shall see the effect of chemical reactions on the concentration
field which is homologous (homogenecus with a uniform an/dy) when the

chemical reaction is frozen.
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Chemically Reacting Field

The equations governing the concentration field between the two planes
with chemical reaction have been already derived, These are Egs. (35) and
(36) with »/L = 1 for the present system of Fig. 3. For convenience, we let
the reference concentration nOQ&be equal to the dverage concentration of the
lower bounding stream, n}{@),

Solutions of Eqs. (35) and (36) have been obtained in the present Study
by the use of a digital computer, for the second order chemical reaction,

@ =2,

The solutions are shown in Figs. 4 through 7 for the two different flow
fields of (L/uOm)duo/dy of 1/4 and 1/2 respectively. Each figure shows the
solutions for the two Damkohler numbers of r = 0 and r= - 0.0281. The boundary
conditions for all cases shown are:

p (0)
ag(1)

5

1

i

5.81

Figures 4 thorugh 7 show first of all that the overall reaction in the
mixing layer is substantially reduced as mean velocity gradient is increased
from 1/4 to 1/2. As it can be inferred from the chemically frozen solution,
Eqs. (40) and (41), an increase in the velocity gradient tends to increase
the species transport, whereas it tends to decrease the mean square fluctuation
of the species. The chemical reaction rate is proportional to the mean square
fluctuation, as w211l as to the sgare of the mean, of the species concentration
in the present second order reaction. Therefore, an increasing velocity
gradient tends to reduce the chemical reaction rate and, at the same time, tends
to reduce the residence time by increasing |<NV-|. These two tendencies

together, therefore, tend to freeze the overall reaction in the flow field as
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the velocity gradient is increased,

Figures 4 through 7 show that both mean square fluctuations, <N2>/"0m
and <N2>/n0, are drastically changed when there is a noneguilibrium chemical
reaction. Inferring from fhe frozen solution, Eqs. (40) and (41), we see
‘that ¢N*Y tends to 'vary with the square of the mean concentration gradient,
The present results show that the variations with respect to Y of the mean
square fluctuations, <N2>/n0w and <N2>/n0, qualitatively reflect that of the
mean concentration gradient in the chemically nonequilibrium case also.
However, the magnitudes of changes in these fluctuations caused by the chemi-
cal reaction are rather surprising.

Let us consider the recombination process given by the present chemical

kinetics vn? where v is a negative constant. The equilibrium state as I » ==

H

is n = 0, as can be seen from Eqs. (35) and (36). Therefore, in that limit,
<N?>, as well as ngs vanishes, Therefore, in the upper region of the present‘
flow field, éay Y > .75, <N2> increases asirlis first increased. The con-
tinuous increase inirl, however, will eventually cause <N’> to pass through a
maximum and will cause it to decrease toward zero. For the other values of
Y, on the other hand, the chemical reaction causes a monotenic decrease of
<N2>,

No general conclusion, of course, can be drawn from the present limited
study. We may say, however, that the chemical reaction will affect <N2>

nonuniformiy with respect to the Damkohler number and the flow field.

VI. CONCLUDING REMARKS
A simplified statistical theory was initiated in the previous paper5
which can be employed to analyze the chemically reacting, turbulent shear

flows., This theory, which was self-containing only up to the dissipation
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function, is developed in the present work until it is completely self-
containing for the molecular Prandtl and Schmidt numbers of order one.

This self-contained theory is first employed to analyze the homologous
flow and chemical-species concentration fields in the absence of chemical
reaction, The effect of chemical reaction on the concentration field is

“then enalyzed. |

The relationship between the Reynolds stress and the mean velocity
gradient obtained in the present analysis is compared to those experimentally
measured at the center of the Couette flows, and behind a nonuniform grid.

7 of

The present theoretical results agree closely with Reichardt's data
Couette flow, With an appropriate extimate of the characteristic length,
the present results also agree satisfactorily with the nonuniform grid data
of Resé%
From the analysis of the chemically frozen concentrétion field, the
ratio of the mass to momentum diffusivities has been determined to be 4/3.
The diffusivities are defined in accordance with the conventional phenomeno-
logical theory. This ratio is only for the homologous flow and concentration
fields. The turbulent transport, as well as the Reynolds stress, will vary
from the homologous case when the fields are inhomogeneous. A second ovder
nonequitibrium chemical recombination is considered in the present study. The
reaction creates an inhomogeniety in the concentration field such that the
mean square fluctuation of concentration varies nonuniformly with respect to
the Damkohler number and flow field.
In certain region of the flow field, the fluctuation initially increases
with the Damkohler number, With the continuous increase in the Damkohler num-

ber, the fluctuation will pass through a maximum and then will decrease toward

the chemically equilibrium state which, for the present particular chemical
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kinetics, is zero. In the other flow regions, on the other hand, the fluc-

tuation decreases monotonically as the Damkohler number is increased.
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respect to the mean velocities Ugy and Ugp o respectively.

The values of n for the two streams are functions of the absolute
values of U because both the flow and the concentration fields are
isotropic. |

It can be readily shown that <N?= = fF<2) dj - [fF(7) dﬁ}z = 0 if

n is constant.
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FIG., 1 Homologous Flow and Concentration Fields of Infinite Extent
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